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CHAPTER 1 INTRODUCTION 

1.1 Power System Short-Term Voltage Stability 

Power system voltage stability is concerned with the ability of a system to maintain 

acceptable voltages throughout the system under normal and contingent conditions [1]. 

Voltage collapse is typically associated with the reactive power demands of loads not being 

met because of limitations on the production and transmission of reactive power.  Limitations 

on the production of reactive power include generator and SVC reactive power limits and the 

reduced reactive power production by capacitors at low voltages.  The primary limitations on 

the transmission of power are the high reactive power loss on heavily loaded lines, as well as 

possible line outages that reduce transmission capacity. Reactive power demands of loads 

increase with load increases (examples include additional motor load and increased air 

conditioning use with increasing temperature), changes in voltage, motor stalling, or changes 

in load composition. It has long been known that the representation of loads can significantly 

impact power system simulation results. The voltage and frequency dependence of a power 

system load greatly affects its dynamic behavior, including small-disturbance stability, 

transient stability, oscillation damping, and voltage stability. 

During large disturbances the transmission system voltage can fall below a critical 

threshold, resulting in induction motors dropping out (control devices disconnecting the 

motors) or motor stalling. Voltage collapse can occur when stalled motors remain connected 



www.manaraa.com

2 
 

  

to the system, or motors previously disconnected are automatically reconnected causing a 

large, mostly reactive, starting current. Furthermore, motors at power plants can drop out or 

stall upon low voltage, thus leading to tripping of generators as well. Such a disturbance is 

classified as a short-term voltage instability phenomenon, with a time frame in the order of 

seconds [1].  

A typical short-term voltage instability scenario would be a fault resulting in a significant, 

momentary drop in voltage.  Motors can react to the voltage drop in several ways depending 

on several factors, such as the type of motor, the type of load, and the motor controls.  

Residential window air conditioning units typically have very simple controls. Thus, if the 

voltage drops and reduces the electrical torque below the mechanical load torque, the motor 

may stall, and eventually be disconnected by the motor thermal overload. Residential split 

system air conditioners usually have contactors to control the compressor motor. On low 

voltage, the contactor will usually disconnect the motor before it stalls.  However, once the 

fault is cleared and voltage is restored, the contactor may close to restart the motor. The 

starting motor has a highly reactive inrush current, typically 4 to 6 times full load. The high 

reactive power demands from motors in starting conditions may cause short-term voltage 

stability problem or even voltage cascading if the system is already close to its maximum 

reactive power limit. Air conditioners with mechanical thermostats are most likely to restart 

immediately upon restoration of voltage.  Air conditioners with electronic thermostats often 

have a time delay that will postpone restarting the compressor motor after voltage is restored 

for, typically, 5 minutes [39]. 
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Factors such as increased use of low inertia compressor motors, air conditioning, heat 

pumps, and refrigeration, increased use of voltage-insensitive power electronic loads, and 

increased use of capacitor banks for reactive compensation, and more intensive use of 

transmission systems, are increasing the likelihood of short-term voltage instability [2]. 

Because of the load model uncertainties and impact of dynamic load behavior on critical 

system characteristics, the short-term voltage instability phenomenon must be studied by 

examining the dynamic interactions between the loads and the power grid. Although the 

industry has made great strides in investigating the related phenomena, there is still a great 

deal of work to be done in the areas of aggregate load modeling, understanding short-term 

voltage instability mechanism and developing mitigation methods against voltage instability. 

1.2 Power System Load Modeling 

Dynamic load behavior under severe system contingencies could drive power system to 

voltage collapse. Accurate load modeling can avoid costly system design miscalculations and 

erroneous system operations [3] – [7]. It is important to have accurate load model parameters 

which influence critical system characteristics, such as damping [8] and voltage stability 

limits. Different load models may cause completely contrary conclusions on system stability 

[9] [10]. It is reported that using “standard” load parameters, the load model could not 

replicate the unstable behavior for a fault event reconstruction [5]. However, exhaustive 

investigations illustrated that the correct behavior could be predicted by altering load 

parameters by small amounts.  
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1.2.1 Difficulty of Aggregate Load Modeling 

An extensive literature is available for identifying load model parameters [12]. However, 

obtaining accurate aggregate load models is very complicated due to the following issues: 

• Loads are time variant and stochastic 

• Issues related to aggregate loads  

– Large number of diverse load components 

– New load components penetration into the system 

– Lack precise composition information for certain loads 

– Level of details to represent various load components 

• Load models must be verified with actual measurements  

The latter two are due to the large number and types of loads connected at the 

transmission system level, which makes the consideration of each separate load numerically 

impractical and provides no insight into the bulk power system analysis.  

Regarding the first issue, it is known that the load in real time system is time variant. Not 

only individual load percentages will change from time to time, other parameters of the 

aggregate load will also change in practical systems. Large amount of real time field 

measurement data are needed to capture the time variant characteristic of load. However, 

even with enough real time load measurement data, it is still difficult to capture the time 

variant characteristic with measurement-based load modeling methods. Measurement-based 

method applies multi-samples of the measurement to optimize the load parameters and derive 

the optimal parameter set that minimizes the load model output error. Actually, the 

measurement-based method is not mainly used to deal with the time variant characteristic of 
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power system load. Instead, it is mainly used to accurately adjust the parameters of load 

model given the real time load measurement data. The derived load model by measurement-

based approach is usually incorporated in the system models to conduct time domain 

simulation for system dynamic analysis. Since the measurement based load model has more 

accurate load parameters, the system stability margin calculation and other system stability 

related information can be obtained more accurately and the system dynamic stability study 

results will be more reliable.  

Because the time interval of the load measurement data used for load parameter 

identification is from 1s to 10s, the measurement-based method generally assumes the load 

characteristics do not change during the time interval that measurements were taken. In our 

load modeling process, we assume the percentages of dynamic load and static load keep 

constant during the period that measurement data was recorded.    

1.2.2 Motivation for Aggregate Load Modeling 

Recently, load modeling improvement is required by the fact that high percentages of air 

conditioner load are increasing in some areas. The unique characteristics of air conditioner 

load could cause short-term voltage instability, fast voltage collapse, and delayed voltage 

recovery. Examples include the voltage collapse incidents occurred in Southern California 

Edison (SCE) and Florida Power & Light Company [11]. High load currents and reactive 

power demands by air conditioner loads caused delays up to 30 seconds for voltage to 

recover following a fault clearing operation.  

As load characteristics change from traditional incandescent light bulbs to power 

electronics-based loads, and as the characteristics of motors change with the emergence of 
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high-efficiency, low-inertia motor loads, it is critical to understand and model load responses 

to ensure stable operations of the power system during different contingencies. Developing 

"better" load models, therefore, has been an important issue for power system analysis and 

control. It is necessary to take advantage of the state-of-the-art techniques for load modeling 

and develop a systematic approach to establish accurate, aggregate load models for bulk 

power system stability studies. 

1.3 Fault Induced Delayed Voltage Recovery 

Recently, “Workshop on Residential Air Conditioner (A/C) Stalling” of Department of 

Energy (DOE) reported that fault-induced delayed voltage recovery is now a national issue 

since residential A/C penetration across U.S. is at an all time high and growing rapidly [37].  

Various studies have shown that FIDVR usually occurs in the areas dominated by 

induction motors with constant torque. These motors can stall in response to sustained low 

voltage and draw excessive reactive power from the power grid [39]-[42]. Since no under 

voltage or stall protection is equipped with A/Cs, they can only be tripped by thermal 

protection which takes 3 to 20 seconds. Severe FIDVR event could lead to fast voltage 

collapse. 

1.3.1 NERC’s Definition of FIDVR 

According to NERC’s definition [38], FIDVR is defined as the phenomenon whereby 

system voltage remains at significantly reduced levels for several seconds after a fault in 

transmission, subtransmission, or distribution has been cleared. 
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1.3.2 Existing Events of FIDVR 

FIDVR has occurred in many utilities across U.S. and one severe case happened 

following a fault cleared in as little as 3 cycles [38]. Fig. 1-1 shows a FIDVR event on July 

13, 2004 at Devers Substation of Southern California Edison (SCE) [11]. In this incident, 

high load currents and large reactive power demands caused delay up to 30 seconds for 

voltage to recover after a fault clearing. 

 

 

Fig. 1-1. Delayed voltage recovery on July 13, 2004 at Devers Substation 

 

Some typical FIDVR events are summarized as follows [38]. 

• FIDVR Event in Florida Power and Light Company (FPL) on August 18, 1988. 
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A bolted 3-phase fault at the Flagami 230-kV switchyard initiated the event. 

Although the fault was cleared in 3.5 cycles, approximately 825 MW of load was 

disconnected in the Miami area, almost all due to customer equipment protection. 

Area voltage was depressed for ten seconds after fault isolation. 

• Multiple FIDVR Events in Southern California Edison (SCE) since 1988. 

First FIDVR event in SCE was observed in 1988. At least 53 subsequent events have 

occurred. Especially, multiple FIDVR events occurred in SCE’s desert regions 

during the peak air-conditioning period, including a major incident in June, 1990, 

which affected a 1000 square mile area of Riverside County.  

• First FIDVR Event in Southern Balancing Authority on July 30, 1999. 

A bus work in the Union City 230kV substation (Metro Atlanta) initiated an event 

that included three separate faults and two breaker failure operations. As a result, 

delayed voltage recovery of up to 15 seconds was observed over a large portion of 

North Georgia. 1900 MW of load and seven small generating units were tripped. 

This event showed that the local transmission system had evolved to a state where 

FIDVR events are possible.  

• FIDVR Event in Egypt. 

In 1990, “Voltage Instabilities Subsequent to Short-circuit Recoveries,” was 

submitted by M. Z. El-Sader, a faculty member of the Electrical Engineering 

Department of Assuit University, Assuit (Egypt). Clearly, FIDVR was a concern 

beyond North America – reaching across the globe to areas of high induction motor 

load penetration. 
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CHAPTER 2 LITERATURE REVIEW AND SCOPE OF THE 
WORK 

2.1 Literature Review 

2.1.1  Measurement based Load Modeling 

Load modeling methods can be classified into two categories: component-based approach 

[13] and measurement-based approach which gives a closer look at the real-time loads and 

their dynamic characteristics [14].  

Theoretical foundation of measurement-based approach is system identification. 

Identification techniques are well established for linear models. However, modeling and 

identification of nonlinear dynamic system are challenging tasks, since nonlinear processes 

are unique in the sense that they do not share many properties. A major goal for any 

nonlinear system modeling and identification scheme is the capability of describing a wide 

class of structurally different systems. 

Nonlinear system identification problems generally have the following properties [15]: 

• Many local optima exist, 

• The surface in the neighborhood of a local optimum can be approximated by a 

hyperparabola, 

• No analytic solution exists, 

• An iterative algorithm is required, 

• They can hardly be applied online. 
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Nonlinear global optimization problems, which are more complex than the nonlinear 

local optimization problems, typically fulfill one or more of the following properties [15]: 

multi-modal, non-continuous derivatives of the loss function, non-continuous parameters, 

and structure optimization problems. All nonlinear global optimization methods require some 

tradeoff between the extent of the global character and the convergence speed. No method 

can guarantee to find the global solution for complex practical applications (in finite time). 

In the power system load modeling field, there are three kinds of approaches for 

nonlinear system identifications: 

1. Analytical based approach – Analytical based approach derives parameters 

determinately according to test results. In 1977, Dr. Shackshaft et al. made a series of 

field tests and proposed a simple method for deriving the parameters of a simplified 

induction motor load model [16]. This kind of approach can be used in a special test 

such as step/staged/controlled test. However, it is extremely sensitive to measurement 

error. 

2. Optimization based approach – The main procedure of an optimization based 

approach is to search the best parameters, which minimizes an error function between 

the measured output variables and simulated ones. Search algorithms have been 

applied in this type of approach. Examples of these search algorithms include: 

•   Search algorithms using statistical techniques: 

– Least Square Based Parameter Estimation [17] 

– Weighted Least Square Based Parameter Estimation [18] 

– Instrumental Variable Based Parameter Estimation [21] 
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– Maximum Likelihood Based Parameter Estimation [22]  

– Gradient Based Parameter Estimation [23] 

•   Search algorithms using heuristic techniques: 

– Simulated Annealing Based Parameter Estimation [19] 

– Neural Network Based Parameter Estimation [26] 

– Genetic Algorithm Based Parameter Estimation [28] 

3. Stochastic Based Approach – These approaches are limited to assumptions of the 

error function [27]. 

Reference [17] used least square method to find parameters of induction motor models. 

Reference [18] applied weighted least square method to derive load parameters. Weighted 

least square was used to solve the problem of unequal variances of errors. It weighed each 

observation based on its variability. Thus, high variability effects can be reduced. Difficulty 

of this method is to find proper weights. Weighted least-square also increases the complexity 

of the algorithm.  

Reference [19] used the adaptive simulated annealing to identify load parameters. 

Reference [20] proposed a multistage algorithm for load parameter identifications. The above 

two references applied the input-output parametric model as the load model which is not 

physical based. The model parameters could vary dramatically during different fault 

conditions and system configurations. It is difficult to constrain the parameters. 

Reference [21] applied the Instrumental Variable (IV) algorithm and the Minimization of 

Sum of Absolute Residues (MSAR) algorithm to identify load parameters. These two 

algorithms are suitable for linear problems or those that can be converted to linear problems. 
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Since it is difficult to convert the nonlinear aggregate load model to linear models, these two 

algorithms are not appropriate for aggregate load modeling. 

Reference [22] applied maximum likelihood identification scheme for load modeling. In 

the maximum likelihood method, a likelihood function must be defined and this usually 

requires knowledge of the probability density function of observations. Computation for this 

method is rather complex. 

Reference [23] applied the gradient based method which could give erroneous parameter 

estimates since it is possible to be trapped in one local solution depending on the initial guess. 

Reference [24] reported that gradients based methods could not deal well with problems of 

local minima and data pollution. They tend to diverge when applied for real systems.  

Reference [25] showed that the nonlinear parameters were calculated straightforward 

from the linear identification results. However, the basic assumption of this approach is that 

large disturbances do not affect the system. However, this assumption can hardly be true for 

practical power systems.  

Artificial Neural Network (ANN) [26] based load modeling can use measurements to 

train and update models adaptively. It does not need the pre-defined load model structure and 

the load composition information. However, it has several shortcomings such as difficult to 

set learning parameters, slow convergence rate and training failures due to local minima, etc. 

Reference [28] demonstrated the suitability of applying GA for the aggregate load 

modeling. One of the main obstacles in applying GA to complex problems has often been the 

high computational cost. Many efforts have been devoted to improve GA for load modeling, 

such as, population diversity based GA (PDGA) [29], adaptively adjusted GA [30]. However, 



www.manaraa.com

13 
 

  

the main reason of GA’s slower convergence rate than that of local search techniques (e.g., 

steepest descent) is that it does not use much local information to determine the most 

promising search direction. Consequently, a GA explores a wider frontier in the search space 

in a less directional fashion. An effective strategy to make use of GA’s global search abilities 

is to combine GA with a complementary local search technique. Because of GA, the hybrid 

approach is less likely to be trapped in a local optimum than a pure local search technique is. 

Due to its local search, the hybrid approach often converges faster than the pure GA does. 

Generally, the hybrid approach can explore a better trader-off between computational cost 

and the global optimality of the solution found. Searching in the open sources of load 

modeling methods, hybrid methods that combine GA with a local search technique were not 

found. 

2.1.2  Mitigation Methods for FIDVR 

To mitigate FIDVR events, two categories of efforts have been mainly devoted: one 

effort focuses on improving the load modeling of A/C motors to capture and study FIDVR 

[43]-[47]; another effort is dedicated to develop control solutions to reduce the impacts of 

FIDVR [48]-[55]. Control solutions can be classified as supply-side solutions and demand-

side solutions. The most popular supply-side solution applied by utilities is the 

implementation of FACTS devices including SVC [51]-[54] and STATCON [55] to increase 

reactive power support. However, these devices are very expensive and cost approximately 

$20-50 million per installation. Since a large number of these devices would have to be 

installed, it could be very costly. Furthermore, it has been reported that FACTS devices may 
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not be fully effective in preventing the extremely fast voltage collapse following a 

transmission fault [37]. 

Demand-side solutions that use protection system to rapidly disconnect motors under low 

voltage conditions are effective and economic to tackle FIDVR [37]. In [48], a slope-

permissive under-voltage load shed relay was proposed based on rate of voltage recovery and 

predicted time to recover. In [49], a MVA-Volt index was proposed for steady-state 

screening of buses to identify FIDVR. SCE recently proposed an under voltage protection 

scheme using a 78% of the motor rated voltage as the stalling protection threshold voltage to 

tackle FIDVR [50]. The above three methods are representatives of demand-side solutions 

developed so far to solve FIDVR (based on available literature in open sources). 

2.2 Scope of Work and Objectives 

The research presented in this dissertation is directed towards: 

1. Providing a systematic methodology to derive aggregate load models at the high 

voltage level (transmission system level) using measurement-based approach. 

2. Developing a novel parameter identification technique via hybrid learning for 

deriving load model parameters accurately and efficiently.  

3. Revealing the mechanism of fault-induced delayed voltage recovery by analyzing 

stalling characteristics of induction motors and relationship between FIDVR and 

motor kinetic energy. 

4. Developing a derivation method of equivalent motor speed for online evaluation of 

motor stalling status.  
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5. Developing a novel online demand side control method for disconnecting stalling 

motors at the transmission level to mitigate FIDVR and fast voltage collapse. 

2.3 Organization of This Dissertation 

The rest of the dissertation is organized as follows. 

In Chapter 3, a systematic methodology for aggregate load modeling is presented. The 

systematic methodology includes selection of aggregate load modeling structure, load 

parameter identification and analysis of the load parameter search space. The introduction 

and comparison of the two traditional load modeling methods are also provided. 

In Chapter 4, a novel parameter identification technique, hybrid learning algorithm, is 

proposed for deriving load parameters. The two main procedures and the overall picture of 

the algorithm are presented. Validation of the proposed technique is done using both 

simulation data and field measurement data.   

In Chapter 5, the static modeling and P-S and Q-V characteristics of induction motor are 

provided to investigate the FIDVR mechanism. Based on the analysis, the motor kinetic 

energy is proposed to tackle the FIDVR problem and a method using online measurement is 

provided for motor kinetic energy derivation. 

In Chapter 6, an online demand side control strategy making use of the motor kinetic 

energy is proposed to disconnect the stalling motors at the transmission level. Validations of 

the proposed methodology are provided to show its effectiveness. The traditional UVLS is 

also applied to tackle the FIDVR problem as a comparison. 
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In Chapter 7, several issues regarding the practical implementation of the proposed online 

demand side control for FIDVR mitigation are tackled and discussed. It includes the study of 

incorporating UVLS relay in large induction motors, practical implementation of the 

proposed method to large power systems and comparison with traditional UVLS scheme.  

The conclusion and further research direction are presented in chapter 8. 
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CHAPTER 3 POWER SYSTEM AGGREGATE LOAD 
MODELING 

3.1 Introduction 

Load characteristics have long been known to have a critical effect on system 

performance, and voltage stability results are known to be highly dependent upon the load 

models applied. In order to derive dependable voltage stability study results, it is desired to 

develop more accurate load models which will be used in power system simulation programs.  

In this chapter, a systematic methodology for aggregate load modeling is presented. The 

systematic methodology includes selection of aggregate load modeling structure, load 

parameter identification and analysis of the load parameter search space. The introduction 

and comparison of the two traditional load modeling methods are also provided. 

3.2 Aggregate Load Modeling Methods 

3.2.1 Component Based Method 

A component based approach involves building up the load model from information on 

its constituent parts [7]. The load supplied at a bulk power delivery point is categorized into 

load classes such as residential, commercial, industrial, agricultural, and mining. Each load 

class is represented in terms of load components such as lighting, air conditioning, space 

heating, water heating, and refrigeration.  The characteristics of individual component have 

been studied in detail and typical data have been developed for load composition and 
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characteristics for each class of load. Techniques have been developed to aggregate 

individual component to produce a composite load model.  

The challenge in component based approach is in collecting and aggregating the load 

components into a model that is appropriate for system simulations.  Only in relatively rare 

cases is the load composition known to a high degree of confidence such as the auxiliary load 

in a power plant. Furthermore, the interaction of various load components during the 

transient and extended term period following a disturbance is not captured in the component 

based approach, since each component is treated independently of each other.  For example, 

the impact of motors stalling and re-starting over the course of a transient introduces voltage 

fluctuations that affect the response of other load components.  The resultant dynamic 

characteristic is a combination of responses of the various components, not necessarily equal 

to the sum of their contributions. 

3.2.2 Measurement Based Method 

Measurement based load modeling approach takes use of measurement data obtained 

from various system locations to develop the aggregate load models. Generally, measurement 

based method includes three steps for load modeling: load model structure selection, load 

parameter identification and load model validation. Among the three steps, the identification 

of load parameters is the most critical task for accurate load modeling. 

   Load parameter identification can be defined as a process aimed at extracting a set of 

parameters which is able to accurately represent the relationship between input variables and 

output variables. The objective function for load parameter identification is usually defined 

as the minimization of the difference between load model outputs and load measurements. 
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For measurement based load modeling, the input variables are the measured voltage and 

frequency and the output variables are the estimated load real power and reactive power. The 

overall procedure of measurement based load modeling is that measured voltage is imported 

to actual load and load model to obtain actual measured powers and estimated power outputs. 

Objective function is then calculated to evaluate whether the load model accuracy criterion is 

satisfied. If not, optimization technique will be applied to optimize the load parameters and 

update the load model. This procedure is repeated until the load model accuracy is 

satisfactory and the corresponding parameters are considered as the optimal set of load 

parameters.   

The advantage of measurement based load modeling method is that it directly measures 

the actual load behavior during system disturbances and the direct measurement data is used 

to derive accurate load model parameters which can be conveniently applied in power system 

simulation programs. In the absence of precise information about a power system load, one 

of the most reliable ways to obtain an accurate load model is to apply the measurement-based 

approach. If field measurement data are available which adequately describe the load 

behavior, a dynamic and/or static equivalent of the load can be obtained by analyzing 

functional relationships between these quantities using parameter identification techniques. 

Measurement based load modeling method also has some shortcomings. When recording 

field measurement data, it is often necessary to monitor the system for a long time to 

consider different variations in system configurations and load patterns. To obtain a better 

load model, we need measurement data recorded during large disturbance that can lead to 

significant changes of voltage and frequency. However the large disturbances are rare events 
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in practical power systems. Hence, it could be difficult to identify and develop “generic” 

parameters that must be used for dynamic and transient studies with a small set of 

measurements from these rare events. 

3.3 Aggregate Load Model Structure 

Different load model structures may make stability study results totally different or even 

ambivalent [31]. Static loads can be represented in term of either a polynomial expression 

(ZIP) or an exponential form. Dynamic loads can be represented in term of either an 

induction motor model (differential equation based) or an input-output model (difference 

equation based). Aggregate load model is the combination of static load model and dynamic 

load model. There are four model structures for aggregate load model: 

• ZIP augmented with Induction Motor (3-state) 

• ZIP augmented with Difference Equation (2nd order) 

• Exponential augmented with Induction Motor (3-state)  

• Exponential augmented with Difference Equation (2nd order)  

However, for a specific set of measurement data, one model structure may be better than 

the others. It is also true that one model structure that gives the best results for one set of 

measurement data may not be the best model structure for a different set of measurement 

data. In this research, ZIP augmented with induction motor is selected as the load model 

structure. The frequency dependent part of the load is ignored. Aggregate load model can be 

generally presented as follows, 
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where ZIPs PP  ,  and MOTP  represent the real power of aggregate load, ZIP load and induction 

motor load; α and β  are static and dynamic load percentages. 

 The ZIP model is expressed as follows,  
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where 0P  and 0Q  represent the real and reactive load power in the steady state; 

1=++ PPP cba  and 1=++ qqq cba . 

The induction motor static model is shown as Fig. 3-1, where sR  is the stator resistance; 

sX  is the stator leakage reactance; mX  is the magnetizing reactance; rX  is the rotor leakage 

reactance rR  is rotor resistance; ( ) sss ωωω −=  is the rotor slip. 
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Fig. 3-1. Static model of induction motor 

The mathematical formulation of induction motor model can be described as follows [7], 
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Load torque equation is expressed as,  
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E
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where ( ) ( )rmrms XXXXXX ++='
 is the transient reactance and is equal to the blocked-rotor 

(short-circuit) reactance, ms XXX +=  is the motor no-load (open-circuit) reactance and    

( ) ( )rsmr RXXT ω+=' is the transient open-circuit time constant; H is rotor inertia 

constant; 0T  is steady state mechanical torque;ω   is rotor rotation speed; '
dE  and '

qE  are d-

axis and q-axis transient EMF of motor; dU and qU are d-axis and q-axis bus voltage, dI  and 

qI  are d-axis and q-axis stator currents; A , B , C , D , E  are coefficients in load torque 

equation in terms of motor rotation speed, and satisfy EDBAC 00
2
01 ωωω −−−= . 

In addition to accurately model individual load, it is critical to determine the percentages 

of each individual load in the aggregate load. This was recognized in a study conducted for 

the model validation and analysis of WSCC system oscillations on August 4, 2000 [32]. Fig. 

3-2 shows the bus voltage oscillations of a 500kV bus in the WSCC system with different 

percentages of induction motors. The study suggests increasing percentages of induction 

motors in selected areas for system stability studies. 
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Fig. 3-2. Impact of induction motors on system oscillation 
 

3.4 Load Parameter Identification 

Load parameters are classified as: dependent parameters: 1β , 2β , pc , qc ,C ; independent 

parameters: 1α , 2α , pa , pb , qa , qb , sR , sX , mX , rR , rX , H , A , B , D , E , summarized in Table 

3-1. 

Objective function for parameter identification is defined as the difference between load 

model outputs and measurements. The mathematical formulation is as follows, 
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where ( )kmkm QP  and ( )ksks QP  are measured and simulated power; θ  represents independent 

parameters; ( )θε  represents the load model output error. 

  

Table 3-1. Parameters to be derived for the aggregate load model 

Load Model Structure Parameters to be Derived 

( )+∗ ZIPα
( )MotorInduction ∗β   

Load composition: 1α , 2α , 1β , 2β  

ZIP model: pa , pb , pc , qa , qb , qc  

Induction motor model: sR , sX , rR , rX  , mX , H, A, B ,C, D, E

 

Load parameter identification is aimed to find load model parameters that results in the 

best fit between measurement samples and load model outputs. Fig. 3-3 is the procedure for 

load parameter identification. Measured voltage is the input to actual load and load model to 

derive output powers. Objective function is then calculated to evaluate whether the accuracy 

criterion is satisfied. If not, optimization algorithm is applied to optimize the load parameters 

and update the load model. 
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Fig. 3-3.  Procedure for the load parameter identification 

3.5 Load Parameter Search Space Analysis 

In numerical search for load model parameters, a list of possible solutions is searched in 

order to locate the solution that minimizes the objective function.  If two load parameters, 

rR and rX are selected, one could try a large number of combinations, calculate the objective 

function value )(θε  and produce a surface plot with rR , rX  and )(θε  (Fig. 3-4). Such a plot 

is a representation of the load parameter search space which can be of very complex 

topography. Figs. 3-4 and 3-5 illustrate that the load parameter search space could have 

numerous peaks of varying heights, separated from each other by valleys on all scales. The 

lowest minimum is referred to as the global optimum, the lesser minima as local optima.   
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In general, finding the “correct” load model parameters is difficult partly due to the 

existence of many local optima in a multidimensional search space.  
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Fig. 3-4. Nonlinear relationships between load parameters rR , rX  and )(θε  
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Fig. 3-5. Load parameter search space with rR , rX  and )(θε  
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CHAPTER 4 HYBRID LEARNING ALGORITHM 

4.1 Introduction 

In this chapter, a novel parameter identification technique, hybrid learning algorithm, is 

proposed for deriving load parameters. First of all, an overview of hybrid learning algorithm 

is provided. It includes the motivation for coming up with the hybrid approach and the 

traditional two procedures for combining global search and local search. Then, the details 

and overall steps of hybrid learning algorithm are presented. Validation of the proposed 

algorithm is conducted using both simulation data and field measurement data.   

4.2 Hybrid Learning Algorithm Overview 

Hybrid learning algorithm combines the genetic algorithm and the nonlinear Levenberg–

Marquardt algorithm. Because of the stochastic nature, GA can quickly steer their searches 

within the region close to the true optimum. However, converging to the exact optimum may 

be best achieved if a local search technique is used for the solution obtained by GA [33]. The 

hybrid learning algorithm takes advantages of the global search ability of GA and the local 

search ability of Levenberg–Marquardt algorithm, which is a more powerful search technique. 

The most important issues when designing a hybrid learning algorithm include the choice of 

GA model, the way of incorporating local search into GA, and the balance between global 

search and local search [34].  
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Two procedures are mainly used to combine GA with local search: 1) use local search 

during GA generations, 2) use local search at the end of a GA run. In the first procedure, 

parent population is operated by the usual genetic operations and then followed by local 

search to create the new population. In the second procedure, local search is applied to 

solutions obtained by the complete run of a GA. According to reference [35], it is likely to 

have a lesser computational cost for the second procedure, which is applied in this 

dissertation to design the hybrid learning algorithm.  

In the following subsections, details of the global search and local search of the proposed 

algorithm are provided.  

4.3 Global Search of Hybrid Learning Algorithm 

1) Problem Representation: In the problem, each load parameter is coded in a binary 

substring. All substrings are concatenated into a full string. Every string in the population 

corresponds to a set of load parameters. 

2) Elitist Strategy: A common selection operator is the fitness-proportional selection. 

With this approach the probability of selection is proportional to an individual’s fitness. 

However, fitness-proportional selection does not guarantee the selection of any particular 

individual, including the fittest. Unless the fittest individual is much, much fitter than any 

other, it will occasionally not be selected. Thus with fitness-proportional selection the best 

solution discovered so far can be regularly thrown away. To overcome this drawback, the 

elitist strategy is applied which requires that the fittest individual is selected and a copy of it 

is not disrupted by crossover or mutation. 
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3) Adaptive Crossover and Mutation Rates: Crossover and mutation rates have great 

impacts on the performance of a GA. Crossover provides a method whereby information for 

differing solutions can be melded to allow the exploration of new areas in the search space. 

Mutation is used to ensure that the population maintains both possible bit values (0 and 1) at 

all loci. During later stages of the run, when hopefully the majority of the population is in the 

vicinity of the global optimum, there might be advantages in confining crossover and 

mutation to lower rates. Conversely, during earlier stages, crossover and mutation with 

higher rates will help in the full exploration of the search space. Therefore, we apply the 

adaptive crossover and mutation rates. 

When kfff avgavg >− /)( max , where k  is a constant; maxf  and  avgf  are the maximum and 

average fitness values, generation is in the early stage. Thus, larger rates of crossover and 

mutation are applied. The crossover rate cP  and mutation rate mP  are chosen as follows, 

where  0cP   and  0mP   are their initial values.  
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When kfff avgavg ≤− /)( max , the generation is in the late period of evolution, in which the 

majority of population is in the vicinity of the global optimum. Thus, smaller rates of 

crossover and mutation are applied as follows,  
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    The adaptive rate is proposed based on the exponential form. The reasons can be 

summarized as follows. First, due to the variety of the generation and the stochastic nature of 

GA, the range of individuals’ fitness values is very large and it is also hard to be determined. 

Meanwhile, the values of crossover and mutation rates are very small. Thus, to express the 

crossover and mutation rates as functions of the fitness values, the exponential form is a good 

choice. Second, our aim of applying adaptive crossover and mutation rates is to apply smaller 

crossover and mutation rates during later stages of the GA run, and to use larger crossover 

and mutation rates during earlier stages of the GA run. Based on the characteristic curve of 

the exponential function xe (where e is the base of the natural logarithm and it equals 

approximately 2.718281828), it can be obtained that when kfff avgavg >− /)( max , cP belongs to 

( 0cP , 2.718 0cP ) which is a larger rate that should be used during earlier stages of the GA run; 

when kfff avgavg ≤− /)( max , cP belongs to (0.37 0cP , 0cP ) which is a smaller rate that should be 

used during later stages of the GA run. 

4) Stopping Criterion: The GA stops after a given number of generations. 
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4.4 Local Search of Hybrid Learning Algorithm 

Local search is performed on the set of parameters obtained by the global search. 

Generally, GA is inefficient in fine-tuning around the local optima. Local search helps a GA 

fine-tune and improves the convergence rate. Local search in the proposed algorithm uses 

Levenberg–Marquardt algorithm [36], an approximate second-order gradient descent method. 

It can avoid problems with singular or poorly-conditioned Jacobians.  

In the local search, the optimal load parameter set  ∗θ  will be obtained to minimize )(θε  

(the error between load model outputs and measurements). Local search takes a set of initial 

parameters as input, and outputs a locally optimized set of parameters. After the global 

search in the load parameter space, GA provides diverse sets of initial parameters for the 

nonlinear Levenberg-Marquardt algorithm. ∗θ  can be found by the local search as follows, 

 

 )(minarg* θεθ
θ

=                                                                                                (4.3) 

 

Parameter updating method of the local search is explained in the following part. In the 

traditional gradient based approach, the parameter is updated as, 

 

iiii hαθθ +=+1
                                                                                                            (4.4) 

 

where α is the step size and  h  is the direction which makes that )()( 1 ii θεθε ≤+ . Usually, the 

Newton method is used to determine the update direction h  as, 



www.manaraa.com

34 
 

  

 

 εT
i JH

N
h 11 −=                                                                                                        (4.5) 

 

where J  is the Jacobian matrix obtained by taking the partial derivatives of the estimated 

outputs with respect to the parameters; H  is the Hessian matrix which is obtained by taking 

the partial derivatives of the Jacobian matrix. 

For Levenberg–Marquardt algorithm, an approximate Hessian is applied and defined as 

follows, 

 

)( IJJH i
T α+=                                                                                                           (4.6) 

 

where iα  is the adaptive step size, I  is the identity matrix. 

Levenberg–Marquardt algorithm updates parameters as, 

 

εαθθ T
i

T
ii JIJJ 1

1 )( −
+ ++=                                                                                   (4.7) 

  

The approach in [36] was used to obtain iα , which is chosen adaptively based on the 

distance to the optimal solution. 

4.5 Hybrid Learning Algorithm 

Step 0.      Initialization: Randomly generate an initial population of popN  solutions. 
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Step 1. Evaluation: Calculate the fitness value of each solution in the current 

population.     

Step 2. Selection: Select ( )elitepop NN −  pairs of parents. The selection probability 

)(θSP  of each solution θ  in the population Ψ is specified by the roulette 

wheel selection scheme with the linear scaling:   

 

 
∑

Ψ∈
−Ψ

−Ψ
=

y

S yff
ffP

))()((
)()()(

max

max θθ                                                            (4.8) 

where ( )Ψmaxf  is the maximum (i.e., worst) fitness value among the current 

populationΨ .  

Step 3. Crossover and mutation: Apply a crossover operation to each of the selected 

( )elitepop NN −  pairs of parents with the crossover probability cP . A new 

solution is generated from each pair. When the crossover operation is not 

applied, one parent is randomly chosen and handled as a new solution. Then 

apply a mutation operation to each new solution with the mutation 

probability mP .  

Step 4. Elitist strategy: Maintain elite members. Select the fittest  eliteN  solutions from 

the population. Then add their copies to the ( )elitepop NN −  solutions generated in 

Step 3 to construct a population of  popN   solutions. 

Step 5. If the number of generations equals to the maximum generation number then 

go to Step 6, otherwise return to Step 1.  
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Step 6. Local search: After the global search by GA in the parameter space, the top n  

fittest solutions in the final generation are selected to be further optimized by 

the local search. The local search using Levenberg–Marquardt algorithm is 

applied to all the selected solutions. The fittest solution among the n  selected 

solutions is the final optimal set of load parameters which will be obtained 

when the local search process is completed. 

In the local search part (i.e., Step 6) of this algorithm, if n  is set to be 1 the fittest 

solution from the global search will be used in the local search. 

4.6 Numerical Test Results 

To test the proposed method, the simulation data from a 23-bus system and the New 

England 39-bus system and the field measurement data from a utility are applied to construct 

the load models. For GA in the hybrid learning algorithm, the parameters are set as follows: 

Population size = 200; Initial crossover probability 8.00 =cP ; Initial mutation 

probability 05.00 =mP ; Elitists size 6=eliteN .    

 In section 4.6.1 and section 4.6.2, two test systems are applied to test the accuracy 

performance of the proposed algorithm for load modeling. In section 4.6.3, field 

measurement data is used to derive load models for testing both the accuracy and 

computation time performances of the proposed algorithm. 

Both the Levenberg–Marquardt algorithm and genetic algorithm are applied to compare 

with the proposed hybrid learning algorithm. Load modeling process is commonly completed 

off-line to derive the accurate measurement-based load models for the power system 
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planning and operation. Accurate load models are very important for both transient stability 

analysis and long-term stability analysis. Since the load modeling research in this dissertation 

does not consider the implementation for on-line load parameter identification, the speed 

feature of parameter identification technique is not the main concern. As the load model 

accuracy is the key factor to affect the system planning and operation and it still needs 

improvements [14], we mainly focus on the accuracy performance of the proposed algorithm. 

Levenberg–Marquardt algorithm, which is a nonlinear least-square based optimization 

algorithm, has been widely accepted and used by existing software tools exploited in the 

industry [11]. Our overall objective is to develop a systematic load modeling methodology 

such that it could be directly and fully useable by industry. Therefore, the proposed hybrid 

learning algorithm is mainly compared to the industry applied Levenberg–Marquardt 

algorithm to show the accuracy improvement  for measurement-based load modeling. 

4.6.1 Test with Simulation Data of 23-bus Test System 

The 23-bus test system consists of 6 generators, 8 loads and 23 branches (see Fig. 6-2 for 

the system one-line diagram). The aggregate load at bus 153 consists of 50% static load (ZIP) 

and 50% dynamic load (Induction Motor). The static load consists of 40% constant power, 

30% constant current, and 30% consistent impedance. The total active and reactive power of 

load 153 is 200MW and 100 MVar. Two different system disturbances were applied for the 

purposes of load parameter identification and load model validation.   
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4.6.1.1 Load Parameter Identification 

A three phase fault at bus 152, initialed at 1s and cleared after 5 cycles, was applied to 

record the system disturbance data for load parameter identification.  Load parameters to be 

identified include: 1) percentages of static and dynamic loads, 2) coefficients of static load 

and 3) individual parameters of dynamic load. Hybrid learning algorithm is applied to search 

for the optimal parameter set. Levenberg–Marquardt (L-M) algorithm is also applied for 

parameter identification as a comparison, in which an arbitrary initial point (within the 

permissible range) was used.    

System disturbance data consists of bus voltage, real power, and reactive power of 

aggregate load 153. Table 4-1 provides the identified load parameters of the aggregate load 

model. Fig. 4-1 presents the power outputs of derived load models compared with the 

measurements. Root mean square (RMS) errors are calculated as Equation (4.9) to evaluate 

the accuracy of derived load models. Table 4-2 shows simulated model output errors in term 

of percentages with respect to the total load. Fig. 4-1 and Table 4-2 illustrate that the derived 

load model by hybrid learning presents smaller errors than the results obtained by L-M 

algorithm. Table 4-1 also indicates that hybrid learning based load parameters are closer to 

the values of actual load than L-M based results. 
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Table 4-1. Load parameters by hybrid learning and L-M algorithm 

 Hybrid learning  L-M algorithm Actual Load 

Dynamic Load  Per Unit  Per Unit Per Unit 

Rs 0.0488  0.0483 0.031 

Rr
 0.0679  0.0532 0.036 

Xs
 0.1037  0.2460 0.120 

Xr
 0.5671  0.3904 0.320 

H 0.7195  0.7320 0.700 

Xm
 3.3231  3.9790 3.200 

A 0.9895  0.9244 1.000 

B -0.0104  0.0057 0.000 

D -0.0104  0.0449 0.000 

E 1.8630  1.9126 2.000 

Static Load  Per Unit  Per Unit Per Unit 

"ap" (P) 0.4281  0.3854 0.300 

"bp" (P) 0.2467  0.3927 0.300 

"cp" (P) 0.3252  0.3296 0.400 

"aq" (Q) 0.1562  0.4217 0.300 

"bq" (Q) 0.1433  0.0753 0.300 

"cq" (Q) 0.7005  0.0641 0.400 

% Dyn. (P) 0.5820  0.4256 0.500 

% Dyn. (Q) 0.4175  0.6640 0.500 
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Fig. 4-1. Voltage and power of load 153 based on the disturbance at bus 152 

 

Table 4-2. Errors between the simulated outputs and measurement 

                            Error 

Algorithm 

RMS Error 

P Q 

Hybrid learning algorithm 0.26% 0.49% 

Levenberg–Marquardt algorithm  0.49% 2.08% 

 

4.6.1.2 Validation of Derived Load Model 

To validate the derived load model, a disturbance at bus 3005 was applied which is 

different from the one used for parameter identification. Fig. 4-2 shows the voltage and 
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simulated powers of the derived load model at bus 153. Table 4-3 provides simulated output 

errors of the derived load model. 

Voltage of bus 153 shows three large variations happened at 1s, 2s and 3s respectively. 

Plots of the power outputs show that the derived load model by hybrid learning satisfactorily 

provided the load responses with the variations of bus voltage. Due to the random and 

complex nature of power system loads and the nonlinear and non-convex search space of 

load parameters, the simulated load model can only be a close approximation to the real load 

and it cannot fit every measurement of the real load exactly. Actually, the simulated load 

model should present general characteristics of loads instead of fitting one or two sets of 

measurements very well, otherwise the model may lose the capability to capture other 

measurements. Since the disturbance used for the validation was not applied to derive the 

model, it is called an unseen system disturbance for the load model [27]. Validation results 

illustrate that the hybrid learning based load model is able to capture the unseen system 

disturbance, which indicates that the derived load model has a good generalization capability. 
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Fig. 4-2.  Voltage and power of load 153 based on the disturbance at bus 3005 

 

Table 4-3. Errors between the simulated outputs and measurement 

                            Error 

Algorithm 

RMS Error 

P Q 

Hybrid learning algorithm 0.069% 0.13% 

Levenberg–Marquardt algorithm  0.14% 0.60% 
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4.6.2 Test with Simulation Data of New England 39-bus System 

New England 39-bus system consists of 46 branches, 10 generators, and 31 loads. Load 

modeling was performed for the load including induction motors at bus 16. A three phase 

fault was applied at bus 15 to record the measurement data, which was used to identify the 

load parameters.    

To validate the derived load models, we applied a contingency in which the short term 

voltage instability and the induction motor stalling were created for testing purposes. The 

contingency is as follows: a three phase fault occurred on the line between buses 17 and 16, 

close to bus 17; fault was cleared after 7 cycles by opening the two circuit breakers and 

removing the faulted line; there was no reclosure. Voltage and power of the load during the 

pre-fault, fault and post-fault periods are shown in Fig. 4-3. It illustrates that the voltage of 

load 16 never recovered to an acceptable value after the fault and this led to the induction 

motor slowdown and eventually stalling as shown in the power and motor speed plots. The 

load model derived by hybrid learning accurately captured the induction motor stalling 

phenomenon and presented smaller output errors than those by L-M algorithm. Table 4-4 

gives the simulated output errors of the two algorithms in terms of P, Q and motor speed. 
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Fig. 4-3. Voltage, power and motor speed of load 16 after a three phase fault  
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Table 4-4. Errors between the simulated outputs and measurement 

Error 

Algorithm 

RMS Error 

P Q Speed 

Hybrid learning algorithm 0.89% 1.83% 0.18% 

Levenberg–Marquardt algorithm  1.94% 2.26% 0.39% 

 

4.6.3 Test with Field Measurement Data of a Utility 

To further test the accuracy and computation time performances of the proposed 

algorithm, field measurement data from an international utility were used to derive the load 

models. The data were taken from field test results carried out at one of the 69kV substations. 

In this substation, feeders supply industrial loads. Load voltage and current data were 

recorded by an IED (Intelligent Electronic Devices). Sequentially, real power and reactive 

power were calculated using the recorded voltage and current. Fig. 4-4 shows load 

characteristics in one disturbance on 12/21/2006. From Fig. 4-4 and Table 4-5, we see that 

outputs of the derived load model by hybrid learning closely match the field measurements 

and present smaller output errors than results obtained by L-M algorithm. Also, it clearly 

shows that with noise in the field measurements, the hybrid learning algorithm can still 

accurately model the system load and capture the real time load characteristics properly.        

 For illustrating the computation time performance, the proposed algorithm is compared 

with GA, which has the same parameter settings as shown at the beginning of section 4.6 and 

its stop criteria is that GA stops when a chromosome reaches a specified fitness level. Two 
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sets of measurement data from the substation mentioned above were applied to model loads 

using the two techniques. Table 4-6 demonstrates the load parameter identification results. 

The computation time and RMS error from both techniques (GA and hybrid learning 

algorithm) are provided in the table. It shows that both techniques can accurately derive the 

load model parameters. Load parameters derived by GA have the smallest RMS error 

percentage as 0.26% and the value by the proposed algorithm is 0.21%. Computation time is 

the main factor to distinguish the two techniques. Time performance testing was carried out 

using an Intel Pentium processor based PC (2.0GHz, 1.0 GB RAM). To identify one set of 

load parameters, GA needs the shortest time as 1728s while the time for the hybrid learning 

algorithm is 86.3s. As expected, GA requires a very long computation time to obtain the load 

parameters since it does not use much local information to determine the most promising 

search direction. Therefore, the hybrid learning algorithm provides a major advantage over 

GA in term of computational cost. 
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Fig. 4-4. Voltage and power of load at one 69kV substation on 12/21/2006 

 

Table 4-5. Errors between the simulated outputs and measurement 

                            Error 

Algorithm 

RMS Error 

P Q 

Hybrid learning algorithm 0.11% 0.26% 

Levenberg–Marquardt algorithm  0.24% 0.51% 
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Table 4-6. Parameter identification results for hybrid learning and GA 

Field Data Computation Time Accuracy (RMS Error) 

GA Hybrid 

learning 

GA Hybrid-learning 

P Q P Q 

Data 1 2435s 125.2s 0.26% 0.58% 0.21% 0.62% 

Data 2 1728s 86.3s 0.63% 1.67% 0.49% 1.14% 

 

4.6.4 System Stability Analysis based on Derived Load Models 

Most Power system failures are not initiated by instability, but rather by unanticipated 

protection operation. The ability to predict operation of protection devices, and hence 

potential protection-induced cascading failures, can be greatly affected by load model fidelity 

[8]. 

System stability analysis is performed using the 23-bus system incorporated with the 

derived load model at bus 153. The test fault is a three-phase fault at bus 152, on line 152-

153, which is subsequently cleared by opening circuit breaker at bus 152 end in five cycles 

and opening the remote end in  7.5 cycles. The whole simulation time is five seconds. Fig. 4-

5 and Fig. 4-6 present the apparent impedance locus seen by relay 152-153 versus protection 

zones in the R-X plain. Seen from the two figures, the measurements based apparent 

impedance locus entered the zone-1 area during the fault which caused the relay to trip that 

line simultaneously. Fig. 4-5 shows that the hybrid learning based load model properly 

captured the fault event and the simulated apparent impedance locus entered the zone-1 area. 
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However, Fig. 4-6  shows that only the zone-2 area was entered based on the L-M algorithm 

derived load model which means the relay did not trip that line simultaneously. Thus, the L-

M algorithm based load model did not response accurately to the fault. This proves that the 

reliability of system stability study results can be improved by having more accurate 

aggregate load models.  
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Fig. 4-5. 3-Zone protection on line 152-153 based on the measurements and the derived load 

model by hybrid learning algorithm  
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Fig. 4-6. 3-Zone protection on line 152-153 based on the measurements and derived load 

model by L-M algorithm 

 

4.7 Summary 

It is difficult and complex to set up an aggregate load model for a large scale of power 

system. In the absence of precise information about a power system load, one of the most 

reliable ways to obtain an accurate load model is to apply the measurement-based approach. 

If field measurement data are available which adequately describe the load behavior, a 

dynamic and/or static equivalent of the load can be obtained by analyzing functional 

relationships between these quantities using parameter identification techniques. There are 

also some shortcomings of this approach. When recording field measurement data, it is often 
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necessary to monitor the system for a long time to consider different variations in system 

configurations and load patterns. To obtain a better load model, we need measurement data 

recorded during large disturbance that can lead to significant changes of voltage and 

frequency. However the large disturbances are rare events in practical power systems. Hence, 

it could be difficult to identify and develop “generic” parameters that must be used for 

dynamic and transient studies with a small set of measurements from these rare events. 

However, this approach is still preferred over the approach that uses pre-defined parameters 

for load models, since it can yield more accurate load parameters. Regarding choosing the 

load model structure, the physical based dynamic load model (induction motor model) 

describes load compositions in terms of physical devices. Such models can potentially 

provide better representations of loads over a wide range of system conditions. However, the 

parameters of the input-output based dynamic load model do not have any physical meanings 

and can vary dramatically during different fault conditions and system configurations. 

Although the model structure and objective function formulation are relatively 

straightforward, and can be particularly useful when the load composition is complex, it is 

very difficult to constrain the parameters. Developing generic models with this model 

structure is next to impossible.  

Our research is aimed at developing generic load models, if possible, that can be applied 

over wide variety of disturbances and system configurations. Measurement-based approach 

has certain advantages over component-based approach in that it reflects actual load 

behaviors during disturbances. Tests using simulation data and field measurement data 

clearly enumerate the ability of the hybrid learning algorithm to identify load model 
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parameters accurately and efficiently under various system operating conditions. Especially, 

the load dynamic responses during large voltage variations and induction motor stalling were 

captured appropriately. Hybrid learning algorithm can be further improved for load 

parameter identifications in several ways, such as the way to combine global search and local 

search, the strategy to set parameters, the balance between global search and local search.   
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CHAPTER 5 FAULT-INDUCED DELAYED VOLTAGE 
RECOVERY 

5.1 Introduction 

In this chapter, the static modeling and P-S and Q-V characteristics of induction motor 

are provided to investigate the FIDVR mechanism. Induction motor kinetic energy deviation 

has been shown to be identical to the integral of power imbalance. Based on the analysis, the 

motor kinetic energy is proposed to be used for FIDVR mitigation. In order to derive kinetic 

energy, the equivalent inertia and the speed of the induction motor are needed. A 

methodology is proposed to obtain these variables through online measurements.   

5.2 Static Modeling of Induction Motor 

Appropriate machine modeling is necessary to understand induction motor characteristics. 

Induction motor is represented using traditional steady state model as Fig. 5-1 (a) [56].  

sR  and sX are stator resistance and reactance; rR and rX are rotor resistance and 

reactance; mX  is magnetizing reactance; ω  is rotor speed; ( ) sss ωωω −= is slip. Since sR is 

small and sm XX >> , model is simplified as Fig. 5-1 (b), where rseq XXX +=  and req RR = are 

equivalent reactance and resistance. 
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Fig. 5-1. Traditional and simplified steady state induction motor models 

5.3 P-S and Q-V Characteristics of Induction Motor 

Using simplified model as Fig.5-1 (b), motor current I  and power are obtained by 

equations 5.1-5.3. lP  and lQ  are real and reactive powers by mechanical load, 
mQ  and 

TLQ  

represent reactive power by magnetizing reactance and total load. Critical slip cs  is obtained 

by differentiating lP  with respect to s  in (5.2). It should be noted that cs  does not depend on 

the voltage. 
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Figure 5-2 (a) shows lP - s  curves under different voltages, where 0V  and stallV  are rated and 

motor stalling voltages. It can be proved that the motor stable operating region is to the left of 

the peak in Fig. 5-2 (a), where css < . Figure 5-2 (b) shows TLQ , mQ and lQ as functions of 

voltage. lQ  gradually increases as voltage decreases until stallVV = , where lQ is increased greatly.  

Observing VQTL − curve, it is found: (1) when voltage is close to the rated value, slope of 

the curve is positive (voltage decrease causes reduced reactive power demand); (2) curve 

between rated voltage and stalling voltage is relatively flat (low voltage sensitivity); (3) when 

voltage is reduced beyond the stalling value, reactive power demand is increased 

tremendously to a very large value 
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Fig. 5-2. P-S and Q-V characteristics of induction motor 
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5.4 Mechanism of FIDVR 

After clearing faults in induction motor dominated areas, low voltages could be sustained 

beyond a certain time range (maybe a few cycles or several seconds). Then induction motors 

start stalling. When motor stalls, it is under the locked-rotor condition which consumes 5 to 6 

times the steady state motor current and thus demands largely increased reactive power 

instantaneously (shown in above Q-V analysis). Even though stalled motors can be 

disconnected by thermal protections with an inverse time-overcurrent characteristic, it takes 

3-20 seconds. If local reactive power resources are exhausted and remote reactive power 

cannot be delivered at that time, voltage cannot be recovered and it may be reduced further. 

Then, the delayed voltage recovery may spread to nearby regions and cause generators to be 

tripped or generator reactive power outputs to be reduced by over-excitation limiters. 

Eventually, system voltage collapse would occur. 

5.5 Applied Transient Voltage Recovery Criterion 

To evaluate system voltage recovery, a transient voltage recovery criterion (TVRC) is 

needed. TVRC for generators have been developed considering generator protection settings 

and susceptible auxiliary equipments [57] [48]. TVRC for transmissions have also been 

proposed based on generator TVRC [57] [48], however, they do not necessarily consider the 

particular issues (motor stalling) in transmission system. The transmission TVRC (see Fig. 5-

3) developed by studying the transmission system of PJM [58] seems to be adequate for 

mitigating FIDVR and thus it is applied in this dissertation. 
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Fig. 5-3. Transient voltage recovery criterion for transmission system [58] 

 

5.6 Motor Kinetic Energy Derivation 

Derivation of equivalent motor kinetic energy consists of obtaining equivalent motor 

inertia and estimating equivalent motor speed using measurements. Since it is not feasible to 

separate dynamic and static loads under one transmission bus of practical power systems, the 

total load at one transmission bus is treated as an equivalent induction motor in order to 

evaluate each load bus’s contribution in the FIDVR event. Therefore, measurements of the 

total bus load will be used to derive the equivalent motor inertia and motor speed. 

5.6.1 Inertia Derivation of Equivalent Induction Motor 

 Inertia is a very critical motor parameter affecting induction motor performance. 

Motors with small inertias are considered as “prone to stall” motors, such as the compressor 



www.manaraa.com

63 
 

  

motors of A/C, which decelerate and stall at fault voltages below about 60% assuming five-

cycle fault clearing time [39]. With slower fault clearing, they may stall at higher fault 

voltages.    

In this dissertation, equivalent motor inertia is derived by measurement-based load 

modeling approach. Main procedure for load parameter derivation can be described as 

follows. Measured voltage is first input to actual load and load model to derive measured and 

simulated real/reactive power. The difference between load model outputs and measurements 

is then calculated to evaluate whether the accuracy criterion is satisfied. If not, optimization 

algorithm is applied to optimize the load parameters and update the load model. Detailed 

load parameter derivation is provided in [59]. Formulation of induction motor model is 

described as follows [7], 
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where ( ) ( )rmrms XXXXXX ++=' is the transient reactance and is equal to the blocked-rotor (short-

circuit) reactance, ms XXX += is the motor no-load (open-circuit) reactance and   
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( ) ( )rsmr RXXT ω+=' is the transient open-circuit time constant; H is rotor inertia constant; 0T is 

steady state mechanical torque; '
dE and '

qE are d-axis and q-axis transient EMF of motor; 

dU and qU are d-axis and q-axis bus voltage, dI and qI are d-axis and q-axis stator currents; 

A, B , C , D , E  are coefficients of load torque in terms of motor rotation speed, and satisfy 

EDBAC 00
2
01 ωωω −−−= . 

For measurement-based load modeling, it is suggested that care must be taken to interpret 

the applicability of the derived model parameters for operating or disturbance conditions that 

are very different from what have been used to derive the load parameters [59]. For example, 

the parameters derived based on measurement data acquired during summer seasons may not 

be accurate or correct for use in winter seasons. Therefore, a thorough sensitivity study for 

derived load parameters (especially inertia H) is provided in this section. Trajectory 

sensitivity method is applied to determine the sensitivities associated with load parameters 

[60] - [62]. Load model equations can be generally formulated as follows: 
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where x  is the state variable and y is the algebraic variable; θ  represents load parameters. 

To identify the trajectory sensitivity, a small disturbance λ  is added to θ  to obtain the 

perturbed load parameters λθθ +=' , and (5.6) is rewritten as,  
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Expand (5.7) into Taylor series (higher order terms neglected),   
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Coefficients of λ  with the same order should be equal,  
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Therefore, the parameter trajectory sensitivities will be obtained by solving the time-

variant linear equations (5.9). 

Figure 5-4 presents the trajectory sensitivities of six critical motor parameters using the 

IEEE Type 6 Model (Appendix A) subjected to a typical fault-induced 35% voltage drop at 

the motor bus. It is known that parameter trajectory sensitivities are affected by the initial 

values and trajectories. However, studies with various initial values and different trajectories 
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indicate that parameter sensitivity rankings in most cases are the same as the one based on 

IEEE Type 6 Model, which has also been proved in [60]. Studies (see Fig. 5-4) have also 

shown that motor inertia (H) has a very small sensitivity value which means obtained inertia 

is not sensitive to measurement variations. Thus, the equivalent inertia derived by 

measurement-based load modeling approach can be applied over a relatively wide variety of 

disturbances. 
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Fig. 5-4. Trajectory sensitivities of parameters H, Rr, Rs and Xm, Xr, Xs 

 

5.6.2 Speed Derivation of Equivalent Induction Motor 

5.6.2.1 Speed Derivation using Online Measurements 

Equivalent motor speed is derived using voltage and current measurements of the total 

bus load which is treated as an equivalent induction motor. Based on simplified steady state 

model (Fig. 5-1 (b)), equivalent impedance eqZ~  can be derived using measured voltage mV~  and 

current mI~  as, 
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where V~ and I~ represent phasors of V  and I . Since magnetizing reactance mX is usually much 

larger than equivalent reactance eqX  (33 and 10 times larger for Motor I and II in Appendix A), 

the term mXV~  is ignored and equations (5.10) are rewritten as, 
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Based on the slip equation and equations (5.11), we can have,  
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where 0s , 0
~

eqZ , 0
~
mV , 0

~
mI represent steady state value of slip, impedance, voltage, current and 

( )eqZ~Re  represents real part of impedance. So, equivalent speed at time t is estimated as,    
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Differentiate (5.13) with respect to t , dtdω  is derived as, 
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where ssωλ 0−=  is a constant. Using (5.13) and (5.14), the equivalent speed at time tt Δ+  can be 

estimated as, 
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where tΔ  is time step. By setting tΔ  as zero, (5.15) can be used to estimate the current speed 

as (5.13). Thus, (5.15) is applied to derive equivalent motor speeds in following sections. 

5.6.2.2 Transient and Steady-State Motor Input Impedances 

Motor steady-state model is shown as Figure 5-5 [68]. 
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Fig. 5-5. Steady state regime equivalent circuit of induction motor 

 

Using the equation for the rotor loop in Figure 5-5, the rotor current is related to the stator 

current as 
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Taking (5.16) into account, from the stator loop we can have, 
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Thus, the input impedance of the circuit as seen from the stator terminals is obtained as 
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where, 101 σLLL += , 202 σLLL += , 111 RL=τ , 222 RL=τ , 011 LLσσ = , 022 LLσσ = , 
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( )( )21 1111 σσσ ++−= . 

The induction motor transient model is shown as Figure 5-6 and can be described by 

Equations (5.19) – (5.20) [68]. 
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Fig. 5-6. Transient regime equivalent circuit of induction motor 
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Using a Laplace transformation, the time domain equivalent circuit shown in Figure 5-6  

can be transformed into a linear circuit in the frequency domain, as shown in Figure 5-7. 

Here the variable “s” stands for “Laplace complex frequency” and should not be confused 

with “slip”, and ( )0111
iLσσ

ψ = , ( )0222
iLσσ

ψ = , and ( ) ( )00 201001
iLiL

m
+=ψ . 
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Fig. 5-7. Transient regime frequency domain equivalent circuit 

 

The Thevenin equivalent circuit, which is derived from the frequency-domain circuit 

shown in Figure 5-7, is shown in Figure 5-8. 
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Fig. 5-8. Transient regime frequency domain Thevenin equivalent circuit 

 

The value of the Thevenin input impedance ( )sZ Th1  and inherent voltage source  ( )se Th1  are 

given as, 
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where, ( ) ( ) ( )000
10111 σ

ψψψ +=
mm

, ( ) ( ) ( )000
20121 σ

ψψψ +=
mm

. 

It is easy to verify that by setting the initial conditions equal to zero and by replacing 

1ωjs = in Equation (5.21) we retrieve the expression for input impedance in the steady-state 

regime given in Equation (5.18).  

5.6.3 Kinetic Energy Derivation of Equivalent Induction Motor 

Motor kinetic energy is used to drive mechanical loads and it is decided by motor inertia 

and speed as follows, 

 

222
2
1 ωω HHKE =⋅⋅=

                                                                                          

(5.23) 

 

where KE  represents motor kinetic energy. H  and ω are to be derived by measurement-

based load modeling approach and equation (5.15) respectively using total load 

measurements. 

 

5.6.4 Relationship between FIDVR and Motor Kinetic Energy 

Based on the induction motor speed acceleration equation (5.24) and kinetic energy 

equation (5.23): 
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(5.25) 

 

where eT  and eP  are electrical torque and power; loadT  and loadP  are mechanical torque and power; 

KEΔ   means KE deviation. 

Equation (5.25) shows the motor kinetic energy deviation is identical to the integral of 

power imbalance. When power imbalance is increased, KE deviation will be increased and 

motor speed will be decreased. Thus, the KE deviation at a bus can indicate the power 

imbalance caused by motor at that bus. Therefore, the connection between motor kinetic 

energy and bus voltage recovery has been illustrated and a large KE deviation may imply a 

severe FIDVR event. 

Also, as indicated by NERC’s report [38] and SCE’s studies [39], there are mainly two 

critical factors that determine the susceptibility of a transmission system to FIDVR events: (1) 

the amount of induction motors experiencing sustained low voltage; (2) the reduced load 

impedance under stalled motor conditions. For factor 2, the reduced load impedance is due 

to increased slip (decreased speed) when motor is stalling. Seen from section 5.6.2, the motor 

speed estimation method is based on the calculation of motor impedance which actually takes 

into account factor 2. For factor 1, since speed estimation uses total load measurements, it 

can indicate the percentage of induction motors in total load (it will be verified in section 6.5 
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of chapter 6) which implies factor 1 is also involved in the equivalent kinetic energy. Thus, 

they further confirm the link between motor KE deviations and FIDVR. 
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CHAPTER 6 ONLINE DEMAND SIDE CONTROL 

6.1 Introduction 

In this chapter, an online demand side control strategy making use of the motor kinetic 

energy is proposed to disconnect the stalling motors at the transmission level. Validations of 

the proposed methodology are provided to show its effectiveness. The traditional UVLS is 

also applied to tackle the FIDVR problem as a comparison.   

 

6.2 Online Load Shedding Strategy 

According to “system protection and voltage stability” report of IEEE [63], four steps are 

usually involved in load shedding: (1) determination of the amount of load to be shed (2) 

selection of loads to be dropped (3) determination of time steps of load shedding (4) 

determination of voltage level at which shedding begins. For steps 1, 2 and 3, the proposed 

load shedding strategy applies equivalent KE to determine the amount of load shedding at 

each selected locations, assuming total amount of load to be shed in each step and time steps 

are already determined. For step 4, the predicted voltage recovery time instead of voltage 

level is applied as the condition to trigger load shedding actions.   

The proposed load shedding strategy (LSS) applies a centralized scheme to identify the 

most effective loads (MEL) to shed in each step. By shedding MEL, the time needed for 

system voltage recovery is the shortest. The centralized scheme first receives system 

measurements from relays at load buses. Then, MELs are identified based on the derived KE 
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deviations. Finally, the trip signals are sent out to shed calculated load amounts at the 

locations of MELs.  

Two strategies (LSS-I and LSS-II) are proposed. LSS-I sheds total load at the bus with 

the largest KE deviation in each step; In LSS-II, total amount of load λ to be shed in each 

step is pre-determined and amount iλ to be shed at each location is decided by its KE 

deviation percentage ip as (6.1), 
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(6.1) 

 

Fig. 6-1 shows overall operation logic of the proposed scheme. It should be noted that the 

equivalent inertia is derived using previous measurements. Measurement-based load 

modeling is mainly conducted off-line to derive load models for dynamic simulations and it 

usually requires several minutes to obtain load parameters. However, the proposed scheme is 

aimed at providing an online fast load shedding solution to mitigate FIDVR which is in the 

time scale of seconds or few cycles. Therefore, considering that motor inertia has been shown 

to be not sensitive to variations of disturbances (section 5.6.1 of chapter 5) and relatively 

constant (will be further validated in section 6.4), the scheme proposes the derived equivalent 

inertia to calculate the current kinetic energy deviation. It is assumed there is no change of 

system load compositions between current and previous time.    
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Fig. 6-1. Overall operation logic of the proposed load shedding scheme 

 

6.3 Simulation Conditions 

The following sections will elaborate on the system description, simulation objectives, 

validations of inertia and speed derivations, performance validations of derived kinetic 

energy and proposed load shedding strategy. 
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6.3.1 System Description 

A sample power system in PSS/E was applied to illustrate the proposed methods and 

strategy. System consists of 6 generators and 23 buses including 7 load buses. Total load is 

3200 MW and 1900 MVAr with 1000 MW and 400 MVAr of induction motor loads 

distributed between buses 153, 203, 3005, 3007 and 3008. Figure 6-2 shows one-line system 

diagram, whose transmission voltage ranges from 230kV to 500kV. Various shunt 

compensations with total amount of 950 MVAr are located at different buses throughout the 

system. 

 

Fig. 6-2. Simulated power system with various induction motor loads 
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Two types of motors are applied: A/C motor (Motor I) - model C in [64]; weighted 

aggregate of residential and industrial motors (Motor II) - IEEE typical motor type 6 in [6]. 

Motor parameters are listed in Appendix A. Each bus also includes static loads modeled as 

constant current load for real power demand and constant impedance load for reactive power 

demand. Three cases with different load compositions are created and details are presented in 

Table 6-1, where c1, c2, and c3 represent case1, case2, and case3; I and II represent Motor I 

and Motor II; Motor quantity is the number of motors at each bus; each motor is 50 MW and 

20 MVAr; c1, c2 and c3 have same motor type at each bus, c2 and c3 have same motor 

quantity at each bus, c1 and c2 have same total load MW at each bus. 

 

Table 6-1. System load composition for three test cases 

Bus 

No. 

Motor 

type 

Motor 

quantity 

Total load MW Motor percentage in the 

total load 

c1,c2,c3 c1 c2,c3 c1,c2 c3 c1 c2 c3 

153 I 2 2 200 150 50% 50% 67% 

154 -- 0 0 600 600 0% 0% 0% 

203 I 2 1 200 100 50% 25% 50% 

205 -- 0 0 1200 800 0% 0% 0% 

3005 I 2 3 200 500 50% 75% 30% 

3007 II 2 2 200 250 50% 50% 40% 

3008 II 2 3 200 400 50% 75% 38% 

 



www.manaraa.com

82 
 

  

 

6.3.2 Simulation Objectives 

The simulation objectives can be summarized as follows: 

• to validate the inertia derivation using the measurement based load modeling 

approach 

• to validate the speed derivation with induction motor measurements and the total load 

measurements 

• to illustrate the incorporation of motor percentages in the speed derivation results 

with total load measurements  

• to validate the performance of the derived kinetic energy in identifying the most 

effective loads to shed 

• to appraise performance of the proposed load shedding strategy comparing with 

traditional four-stage UVLS  

 

6.4 Validation of Inertia Derivation 

Inertia has been derived for the three test cases with four faults (see Appendix B) shown 

in Table 6-2. Observing the first three rows, the derived inertia for each bus has some 

variations, which is because three cases have different system load compositions. However, 

comparing the last two rows, it is found the derived inertia are close to each other and they 

appear to be relatively constant, which is because they are based on the same system load 
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composition even though associated with different faults. Fig. 6-3 provides load modeling 

results of simulated and measured load outputs for bus153 based on fault1 and fault2 in case3.   
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Fig. 6-3. Load modeling results for bus153 based on fault 1 and 2 in case3 

 

Table 6-2. Derived equivalent inertia of each bus load with the four faults 

Bus 153 203 3005 3007 3008 

H-Case1_fault1 0.2149 0.2082 0.2114 0.8308 0.8341 

H-Case2_fault1 0.1457 0.0829 0.2586 0.7006 0.8389 

H-Case3_fault1 0.1522 0.0876 0.1860 0.8498 1.1926 

H-Case3_fault2 0.1556 0.1175 0.1664 0.8726 1.3058 
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6.5 Validation of Speed Derivation 

Speed was derived using induction motor measurements to validate correctness of the 

proposed approach and using total load measurements to prove its suitability for practical 

applications. Also, incorporation of motor percentages in speed derivations is illustrated 

using total load measurements. 

6.5.1 Speed Estimation with Induction Motor Measurements 

Using fault1 in case1, induction motor measurements of five motors were obtained and 

applied to derive speeds (to derive KE deviation later, speed deviation was shown instead of 

speed, where speed=1+speed deviation). Compared with measured motor speeds in Fig. 6-4, 

the derived speeds in Fig. 6-5 well captured the trend of individual motor speed variation and 

the relative speed between motors. Magnitudes of the derived speeds do not match the 

measured values since the derived speeds are approximations using only voltage and current 

measurements. However, derived speed magnitudes are not essential for the identifications of 

MELs to shed. 
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Fig. 6-4. Measured speed after fault clearing with fault1 in case1 
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Fig. 6-5. Derived speed with induction motor measurement after fault (f1,c1) 
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In order to further validate the speed estimation method, following figures (Fig.6-6 to 

Fig.6-11) provide the measured and estimated speeds using induction motor measurements 

obtained from Fault 1 in Case 2, Fault 1 in Case 3, and Fault 2 in Case 3.  

The figures from Fig.6-6 to Fig.6-11 again illustrate that the proposed speed derivation 

method, indeed, can well capture the trend of individual motor speed variation and the 

relative speed between motors. This is adequate for the identification of the most effective 

loads to shed to mitigate FIDVR events. 
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Fig. 6-6. Measured speeds after fault clearing with fault1 in case 2 
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Fig. 6-7. Derived speeds after fault clearing with fault1 in case 2 
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Fig. 6-8. Measured speeds after fault clearing with fault1 in case 3 
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Fig. 6-9. Derived speeds after fault clearing with fault1 in case 3 
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Fig. 6-10. Measured speeds after fault clearing with fault 2 in case 3 
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Fig. 6-11. Derived speeds after fault clearing with fault 2 in case 3 

 

6.5.2 Speed Estimation with Total Load Measurements 

Treating total bus load as an equivalent induction motor, total load measurements (fault1 

in case1) including dynamic and static loads at all seven load buses were recorded and used 

to derive speeds. Fig. 6-12 presents the derived speed deviations for the seven loads before 

fault (fault was applied at 0.1s) and Table 6-3 provides speed deviation values at time t=0.09s. 

They show derived speed deviations of bus 154 and 205 are zero, because the two buses do 

not have any motors and thus real parts of their equivalent impedances keep constant. 

However, other five buses with motors did show small or large speed deviations since real 

parts of their equivalent impedances involve slip. Therefore, it is illustrated the derived speed 
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using total load measurements can indicate the load buses which have no motors at all and 

these load buses normally are not good candidates for MELs to shed.  

Fig. 6-13 shows derived speeds using total load measurements after fault clearing. 

Compared with Figs. 6-4 and 6-5, Fig. 6-13 shows similar trend of individual speed variation 

and relative speed between motors. This similarity is because each motor bus in case1 has the 

same load composition.  
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Fig. 6-12. Derived speed with total load measurements before fault (f1, c1) 
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Fig. 6-13. Derived speed with total load measurements after fault (f1, c1) 

 

Table 6-3. Derived speed deviation ϖ   at time t=0.09s with fault1 in case1 

Bus 153 154 203 205 3005 3007 3008 

510−⋅ϖ  2.1 0 2.1 0 1.4 -0.035 -0.66 

  

6.5.3 Incorporation of Motor Percentages in Derived Speeds 

Using fault2 in case3, total load measurements were used to derive speeds. Comparing 

Fig.6-14 (measured speed) with Fig.6-15 (derived speed), the measured speed deviation of 

bus 3005 is always larger than that of bus 203 and the two curves have no intersection in Fig. 

6-14; however, in Fig. 6-15, derived speed deviation of bus 203 is first larger than that of bus 
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3005 and became smaller later and the two derived speed curves did show an intersection 

around 1.1s. Does this mean the derived equivalent motor speeds are not correct? The answer 

is definitely no. The difference is because bus 203 has larger motor percentage than bus 3005. 

The speed derivation with total load measurements automatically incorporated the motor 

percentage information. Therefore, the bus with smaller motor percentage but larger actual 

speed deviation may have similar derived speed to that of another bus which has larger motor 

percentage but smaller actual speed deviation. 

 Above analysis illustrate the equivalent motor speeds using total load measurements. It 

essentially take into account motor percentages and this will help the equivalent motor KE 

deviation to identify the most effective loads more efficiently.  
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Fig. 6-14. Measured speed after fault clearing with fault2 in case3 
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Fig. 6-15. Derived speed with total load measurements after fault (f2, c3) 

 

6.6 Validation of Kinetic Energy Performance 

Based on the derived equivalent motor speeds with total load measurements, the kinetic 

energy of each motor bus was calculated and its performance was illustrated and validated. 

6.6.1 Performance Validation with Fault1 in Case2 

To evaluate voltage recovery, critical recovery time (CRT) is proposed as the time 

needed for voltage of every load bus to recover to a pre-set value. Smaller CRT means better 

voltage recovery. 

By looking at Figure 6-13, one could argue that the equivalent motor speed also seems to 

be able to indicate the MEL with fault1 in case1 (refer to “c1” in Table 6-1) where each 
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motor bus has the same amount and percentage of motor loads. This argument will be tested 

in the following section using another different case. 

Various load shedding were applied at 0.48s with fault1 in case2. Table 6-4 provides 

voltage recovery results based on CRTs. It is shown that loads at bus 3005 and 3008 are the 

top two MELs to shed and shedding loads at bus 3007 and 153 have the same CRT which are 

ranked as the third and fourth MEL. Seen from derived speeds in Fig. 6-16, bus153 shows 

the second largest speed deviation. However, CRT only indicates bus153 as the fourth choice 

for MEL. Although derived speed was able to indicate MEL with fault1 in case1, test using 

fault1 in case2 (refer to “c2” in Table 6-1) shows derived speed cannot properly identify 

MEL when motor amount and percentage of load buses are different. 

However, CRT of each bus cannot be obtained for on-line fast load shedding, since it 

requires time domain simulations. Thus, an indicator is needed which can be derived in 

online environment and can reflect the CRT information of each bus.   

Fig. 6-17 provides the derived KE deviations. They well indicated bus 3005 and 3008 as 

the top two MELs and bus 3007 and 153 as the third and fourth MEL, which are identical to 

the CRTs based results. It was also noted that the derived KE deviations of bus 3007 and 153 

are very close, which actually is consistent with the fact that bus 3007 and 153 had the same 

CRT.  

In summary, the simulation using fault1 in case2 validated that the derived kinetic energy 

of equivalent motors are able to indicate the MELs to shed but the other indicator - 

equivalent speed has been proved to be not appropriate to identify the MELs. 
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Table 6-4. CRTs of shedding various loads with fault1 in case2 

Bus shed no shed 153 203 3005 3007 3008 

CRT(s) 0.897 0.655 0.714 0.586 0.655 0.627 
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Fig. 6-16. Derived speed with total load measurements after fault (f1, c2) 
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Fig. 6-17.  Derived KE deviations after fault clearing with fault1 in case2 

 

6.7 Validation of Proposed Strategy Compared to Traditional UVLS 

The derived KE deviation is used to come up with two load shedding strategies to 

mitigate FIDVR. For comparisons, conventional four-stage UVLS was also applied as 

follows: Stage 1: up to 10% of area load shedding 0.05s after fault clearing; Stage 2: up to 

5% of area load shedding 0.15s after fault clearing; Stages 3 and 4: identical to the second 

stage, except operating after 0.25s and 0.35s, respectively. Condition of triggering load 

shedding is similar to [48] which is based on voltage recovery time predicted using linear 

approximation,  
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where reT , T and TΔ  are recovery time, current time and time interval respectively. TV  and 

TTV Δ−  are voltages at T  and TT Δ− , setV  is voltage setting (0.8 p.u.).  

 

Table 6-5. KE deviation and percentage at t=0.35s with fault1 in case3 

Bus 153 203 3005 3007 3008 

KE Dev. 4.04 1.33 0.62 2.00 2.55 

pi 38.3% 12.6% 5.9% 19.0% 24.2% 
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Table 6-6. Results for UVLS, LSS-I and LSS-II with fault1 in case3 

 Shed time Tre(predicted) Shed load 

UVLS 0.35s 

0.45s 

0.55s 

1.1761s 

0.8090s 

0.6205s 

320MW (10%) 

160MW (5%) 

160MW (5%) 

LSS-I 0.35s 

0.45s 

1.1761s 

0.8486s 

150MW (bus153) 

400MW (3008) 

LSS-II 0.35s 1.1761s 320MW (10%) 

 Tre(with-shed) Tre(no-shed) Total load shed 

UVLS 0.5810s 1.069s 640MW 

LSS-I 0.5281s 1.069s 550MW 

LSS-II 0.5883s 1.069s 320MW 

Tre(predicted): first-order predicted recover time before shedding; 

Tre(with-shed): recover time with shedding by time domain simulation; 

Tre(no-shed): recover time without shedding by time domain simulation. 

 

For LSS-II, the fraction iλ  of load to be shed at each location is based on KE deviation 

percentage pi from equation (6.1) and pi  are listed in Tables 6-5 and 6-7 for case3. Table 6-6 

summarized shedding results of LSS-I, LSS-II and UVLS with fault1 in case3. Based on 

predicted voltage recovery times, UVLS applied three times of load shedding with total 

amount 640 MW and voltage recovery time is 0.5810s which meets the transient voltage 

recovery requirement (Fig. 5-3); LSS-I applied two times with total amount 550MW to get 
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recovery time as 0.5281s and LSS-II applied only one time with total amount 320MW to get 

recovery time as 0.5883s.  

Comparing LSS-II with UVLS, UVLS got the same voltage recovery time as LSS-II but 

required 100% more load to be shed than LSS-II. Comparing LSS-II with LSS-I, even though 

LSS-I had a faster voltage recovery (it is not necessary, since LSS-II already met voltage 

recovery requirement), it shed 71.9% more loads than LSS-II. Fig. 6-18 shows voltage 

recovery using the three strategies with fault1 in case3.  

Similarly, results with fault2 in case3 are provided in Table 6-8 and Fig. 6-19. In Table 6-

8, “inf” means the predicted recovery time is infinity, and s1, s2 and s3 correspond to Shed I, 

Shed II and Shed III in Fig. 6-19. It is shown that LSS-II achieved faster voltage recovery 

and required 50% less load to be shed than UVLS.  

In summary, based on tests with fault1 and fault2 in case3, load shedding results using 

the three strategies obviously proved that the KE deviation based combined load shedding 

strategy (LSS-II) is able to achieve faster voltage recovery and require much less load to be 

shed than the traditional UVLS scheme. Therefore, LSS-II has been validated to be an 

effective strategy which is better than traditional UVLS scheme for online fast load shedding 

to mitigate FIDVR. 
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Fig. 6-18. Voltage recovery with LSS-I, LSS-II and UVLS for fault1 in case3 

 

Table 6-7. KE deviation and percentage at t=0.35s with fault2 in case3 

Bus 153 203 3005 3007 3008 

KE Dev. 3.21 1.01 0.60 1.99 2.56 

pi 34.3% 10.8% 6.4% 21.2% 27.3% 
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Table 6-8. Results for UVLS, LSS-I and LSS-II with fault2 in case3 

 Shed time Tre(predicted) Shed load 

UVLS 0.35s (s1) 

0.45s (s2) 

0.55s (s3) 

Inf 

0.7921s 

0.6229s 

160MW (5%) 

160MW (5%) 

160MW (5%) 

LSS-I 0.35s 

0.45s 

Inf 

0.6658s 

150MW (bus153) 

400MW (3008) 

LSS-II 0.35s 

0.45s 

Inf 

0.6894s 

160MW (5%) 

160MW (5%) 

 Tre(with-shed) Tre(no-shed) Total load shed 

UVLS 0.5717s 0.9452s 480MW 

LSS-I 0.4596s 0.9452s 550MW 

LSS-II 0.5322s 0.9452s 320MW 
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Fig. 6-19. Voltage recovery with LSS-I, LSS-II and UVLS for fault2 in case3 

 

6.8 Summary 

Kinetic energy based online load shedding scheme for mitigating fault-induced delayed 

voltage recovery has been proposed. The kinetic energy is derived using equivalent motor 

inertia and equivalent motor speed. 

Equivalent motor inertia was obtained by measurement based load modeling [59]. 

Through trajectory sensitivity studies, it has been shown that motor inertia has a very small 
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sensitivity to measurement variations. The derived inertia could be applied over a relatively 

wide variety of disturbances.  

Equivalent motor speed was estimated using motor steady state model. Test with 

induction motor measurements validated correctness of the proposed approach. Test using 

total load measurements proved its suitability for practical applications and illustrated that 

derived speeds automatically took into account motor percentage information.    

Analysis has revealed that motor KE deviation is identical to the integral of power 

imbalance, which indicates the connection between KE deviations and system transient 

voltage recovery. Furthermore, load shedding results have validated this approach can 

properly determine MELs to shed. 

Two load shedding strategies were proposed: LSS-I sheds entire loads at the bus with the 

largest KE deviation in each step and LSS-II sheds combined loads at various buses based on 

their KE deviation percentages in each step. The proposed strategies have been investigated, 

illustrated, and validated by simulations performed on a sample system. It has been shown 

that LSS-II is, indeed, able to identify the most effective load shedding locations and load 

shedding amount at each location for mitigating FIDVR. In comparison with traditional four-

stage UVLS scheme, the proposed LSS-II can achieve faster voltage recovery and require 

much less load to be shed. It provides an effective and efficient online solution using load 

shedding to mitigate FIDVR events.  

This novel online load shedding strategy is a very desirable and valuable complement to 

fast voltage collapse prevention and short-term voltage stability control.   
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CHAPTER 7 PRACTICAL APPLICATION TO MITIGATE 
FIDVR  

7.1 Introduction 

In this chapter, several issues regarding the practical implementation of the proposed 

online demand side control for FIDVR mitigation are tackled and discussed. It includes the 

voltage recovery versus different fault clearing time and fault locations, study of 

incorporating UVLS relay in large induction motors, load shedding comparison between ZIP 

and Motor loads, practical implementation of the proposed method to large power systems 

and comparison with traditional UVLS scheme.   

7.2 Voltage Recovery versus Fault Clearing Time and Location 

7.2.1 Simulation System and Load Compositions 

The 9-bus test system was obtained from the small size test system applied by ERCORT 

for the short-term system stability criteria studies [66], as shown by Fig. 7-1. It includes two 

generators and three load buses with each bus connected with both static loads and dynamic 

loads. Adequate reactive power compensation has also been incorporated in the test system. 

This small test system will be used to study the voltage recovery under different fault 

conditions and the impact of incorporating UVLS relay in the large industrial induction 

motors. 
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Fig. 7-1. One-line diagram of simulation system  

 

The three load buses all have static loads and induction motor loads. Two types of motors 

are applied: air conditioner motor (Motor I) - model C in [64]; weighted aggregate of 

residential and industrial motors (Motor II) - IEEE typical motor type 6 in [6]. The remaining 

loads at each bus are represented by the constant impedance (Z) load. Bus 7 has both types of 

induction motor loads (Motor I and II), while bus 8 has motor II connected and bus 9 has 

motor I connected. The load compositions of the test system are summarized in Table 7-1. 
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Table 7-1.  System load compositions  

Bus Motor 

Type 

Motor 

MW; Per. 

Motor MVar; 

Per. 

Z Load 

MW; Per. 

Z Load 

MVar; Per. 

7 I&II 100; 42% 40; 54% 137; 58% 34; 46% 

8 II 50; 42% 20; 54% 69; 58% 17; 46%  

9 I 50; 48% 20; 48% 55; 52% 22; 52% 

 

7.2.2 Voltage Recovery versus Fault Clearing Time 

In order to show the effects of fault clearing time on the voltage response (voltage 

recovery) after fault is cleared, a three phase short circuit fault was applied at bus 7 and 

started at 0.05s. Figures 7-2, 7-3 and 7-4 shows the three sets of voltage responses with 

respect to three different fault clearing time at 0.2s, 0.3s, and 0.4s, respectively. In each set, 

the voltage recovery trajectories of two generator buses and three load buses are plotted. 

As shown in Figure 7-2, the two generator voltages recover to 0.8p.u. in less than 2 

seconds with 0.2s fault clearing time and it meets the generator voltage recovery criterion. 

Thus, the two generators will not be tripped by their protection systems. However, Figures 7-

3 and 7-4 show that the longer fault clearing time causes voltage recovery to be delayed 

further. Therefore, one generator will be tripped with 0.3s fault clearing time and two 

generators will be tripped with 0.4s fault clearing time. 
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Fig. 7-2. Voltage recovery trajectories with 0.2s fault clearing time 
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Fig. 7-3. Voltage recovery trajectories with 0.3s fault clearing time 
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Fig. 7-4. Voltage recovery trajectories with 0.4s fault clearing time 

 

It has been shown that fault clearing time is an important factor to affect the voltage 

recovery trajectory. Generally, a longer fault clearing time will more severely delay the 

voltage recovery process. Thus, the fault clearing time should be considered when 

developing control methods for the real-time online FIDVR mitigation.     

 

7.2.3 Voltage Recovery versus Fault Location 

Different fault locations can cause fault to occur at different voltage levels, close to 

generators or loads, at loads with different amounts or load compositions, at different line 

loading conditions, at buses with different reactive power compensation capabilities. 
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Therefore, fault location is another key factor to affect voltage responses after fault is cleared 

and different fault locations usually lead to various voltage recovery situations. 

Using the 9-bus test system from ERCOT, three faults at buses 7, 8, and 9 were applied to 

investigate the effects of fault locations on the voltage recovery. The three faults are the same 

in terms of the fault starting time, fault clearing time, and fault impedance. However, they are 

different in term of the fault location, which means that they occurred at different voltage 

levels (bus 7 and 8 are at 138kV, bus 9 is at 13kV), with different electrical distances to 

generators (bus 7 and 8 are closer to generators than bus 9), at loads with different amounts 

and load compositions. Figures 7-5 and 7-6 show the two sets of voltage responses with 

respect to two different fault locations at bus 8 and 9.       

It can be seen that, for the same fault clearing time of 0.4s, with the faults at bus 7 (Fig. 

7-4) and bus 8 (Fig. 7-5), the two generators’ voltages could not recovery to 0.8 p.u. within 2 

seconds. However, the fault occurred at bus 9 let the voltages of the two generators recover 

to 0.8p.u. in 2 seconds as seen in Fig. 7-6. Therefore, the fault location indeed can greatly 

affect the voltage recovery process and should also be tackled in the real-time online FIDVR 

mitigation.       
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Fig. 7-5. Voltage recovery trajectories with fault location at bus 8 
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Fig. 7-6. Voltage recovery trajectories with fault location at bus 9 
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In summary, the above results of studying the voltage recovery trajectory under different 

fault conditions have shown that the fault clearing times and fault locations can greatly 

impact the voltage recovery.  

Since the proposed online demand side control scheme applies motor kinetic energy 

information to control the distributed controllers (relays) throughout the system, the timing, 

location and amount of control can be adjusted according to different fault conditions.  This 

adaptive control feature of the proposed demand side control scheme provides a great 

advantage over supply side control methods for practical FIDVR mitigation in a real-time 

online environment.  

7.3 Three Phase Induction Motor with UVLS Relay 

In the large practical power system, the transmission substation usually connects both 3-

phase and single phase induction motors. The typical representative for 3-phase induction 

motors is the large industrial induction motor which normally includes under-voltage load 

shedding relay to trip the motor under low voltage conditions. The typical representative for 

single phase induction motors is the air conditioning motor which does not have under-

voltage load shedding relay but only has thermal protection relay.  

Since the large three phase induction motors have relatively large inertia and are 

equipped with UVLS relays, they are not easy to stall and could be disconnected by UVLS 

relay if stalling occurs. Therefore, the large three phase induction motors usually are not the 

cause for the delayed voltage recovery events. The real cause of the delayed voltage recovery 
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occurred in many southern states of U.S. is the single phase small induction motors which 

have relatively small inertia and can stall quickly in response to low voltage conditions. 

Since these small induction motors only have thermal protection relay, it takes 3 to 20 

seconds to trip the motor. 

In Chapter 6, both large industrial induction motor (Motor II in Section 6.3.1) and small 

residential induction motor (Motor I in Section 6.3.1) have been included. However, UVLS 

relay has not been incorporated in the large industrial induction motors, since Chapter 6 

focused on the load shedding strategy using the KE deviation information to identify the 

most effective load shedding locations and the amount to be shed at each location.  

In this chapter, we incorporated the UVLS relay in large induction motor to evaluate the 

online demand side control for FIDVR mitigation. In order to set the under-voltage load 

shedding relay equipped within the three phase induction motor, the following criterion from 

reference [65] is applied. “Based on the typical time-voltage characteristics of an Under-

Voltage Relay, for 70% of tap setting, the time ranges from about 0.8 second to about 9 

seconds, which is a reasonably wide range for a wide area of applications.” Therefore, the 

UVLS relay is set to trip the motor if the voltage is sustained below 0.7p.u. for more than 48 

cycles (0.8 second) and the operation time for circuit breaker is 3 cycles. 

7.3.1 Simulation Results 

For comparison, the voltage recovery curves with and without the large motor UVLS 

relays are provided, as shown in Figures 7-7 and 7-8. 

Comparing Figure 7-7 with Figure 7-8, we can see that the voltages recover faster with 

the UVLS relay equipped with the large induction motor. It is because the UVLS relays 
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tripped the large induction motors at buses 7 and 8 in response to the low voltage condition 

and this avoids the large amount of reactive power demanded by the stalling motors and thus 

the voltage recovery is faster. On the other hand, since no UVLS relay was equipped with the 

large motors, additional large amount of reactive power was required from the stalling 

motors and this greatly delayed the voltage recovery process and increased the risk of fast 

voltage collapse. Therefore, incorporating the UVLS relay in the large motors will reduce the 

probability of having delayed voltage recovery events. 
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Fig. 7-7. Voltages recovery without UVLS equipped in large motors 
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Fig. 7-8. Voltages recovery with UVLS equipped in large motors 

 

7.4 Demand Side Control with Motor UVLS Relay 

From Figure 7-8, it can be seen that even though the UVLS relay in large motors tripped 

them under low voltage conditions, the voltage recoveries of buses 7, 8, and 9 are still 

delayed. Therefore, the traditional UVLS and proposed online demand side control strategy 

are applied to mitigate the delayed voltage recovery at buses 7, 8 and 9. 

7.4.1 Simulation Results 

In Figure 7-9, it is shown that the traditional UVLS applies three stages of load shedding 

to recover the voltage of bus 9 (slowest recovery bus) to 0.7 p.u. in 4s, which did not meet 
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the requirement of recovering to 0.8 p.u. in 4s. Thus, the proposed online demand side 

control strategy is also applied to mitigate the FIDVR event. 

In Figure 7-10, it is shown that the proposed KE based scheme applies only two stages of 

load shedding to recover the voltage of bus 9 to 0.82 p.u. in 4s, which met the requirement. 
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Fig. 7-9. Voltages recovery with IM-UVLS and traditional UVLS 
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Fig. 7-10. Voltages recovery with IM-UVLS and KE based LSSII 

  

Table 7-2. Results for UVLS and KE based scheme 

 Shed time Shed load Total shed V recover 

UVLS      1.5s (s1) 

     1.7s (s2) 

     1.9s (s3) 

92MW (20%) 

46MW (10%) 

46MW (10%) 

184 MW To 0.7 p.u. in 4s 

KE 

scheme 

1.5s 

1.7s 

92MW (20%) 

46MW (10%) 

138 MW To 0.82 p.u. in 4s
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Table 7-2   shows that the traditional UVLS shed total load amount of 184 MW without 

meeting the requirement, but the proposed KE based scheme shed total load amount of 138 

MW (25% less) and meet the requirement.  

The load shedding results with UVLS relays equipped in three phase motors have further 

validated that the proposed KE based online demand side control strategy is able to shed 

much less load and recover  system voltage faster comparing to traditional UVLS scheme.   

7.4.2 Impacts of Incorporating Induction Motor UVLS Relay 

Incorporating UVLS relay in three phase motor actually helps the proposed KE deviation 

based scheme to identify the most effective loads (MEL) to shed , since all the stalling three 

phase large motors were already tripped by the UVLS relays and thus only the stalling single 

phase induction motors are still connected to the power grid. Therefore, the complexity of the 

system load compositions is reduced. It is always easier for the scheme to identify the MELs 

to shed in the system with single type of induction motors than in the system with multiple 

types of induction motors.     

The impact of incorporating the UVLS relay in large induction motors to our proposed 

methodology is that the total amount of load shedding by our proposed scheme is less. Since 

the UVLS relay trips the stalling three phase motor, the fault-induced delayed voltage 

recovery becomes less severe and thus less loads are needed to be shed for meeting the 

voltage recovery criterion. 
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7.5 Load Shedding Comparison between ZIP and Motor Loads  

7.5.1 Motivation 

In practical power systems, both ZIP loads and induction motor loads take large 

percentages in the entire system loads. ZIP loads are commonly classified as the static load 

which is composed of constant impedance load, constant current load and constant power 

load. Induction motor loads are usually considered as dynamic loads whose real power and 

reactive power consumption vary according to different system operating conditions. In order 

to practically mitigate FIDVR events in an online environment, it is necessary to evaluate 

and compare the load shedding effects at ZIP loads and induction motor loads. 

As shown in the previous sections in this chapter, the fault location and fault duration 

time can greatly impact the system voltage recovery process. Also, different fault could make 

the load shedding effects at ZIP and induction motor loads different. Even though it is known 

that the FIDVR problem is normally caused by the induction motor stalling phenomenon, it 

is desired to compare the load shedding results at ZIP and induction motor loads in some 

particular situations, such as the fault in the location very close to the ZIP load and relatively 

far away from the induction motor loads.  

The sample power system used in Section 6.3.1 is applied as the test system to compare 

the ZIP and induction motor load shedding effects. A three phase short circuit fault was 

applied at bus 154 in the test system with fault clearing time of 0.16s. The details of this fault 

can be found in Appendix B and it is referred as fault 1 in case 1. According to Table 6.1, 

there are totally 7 load buses, among which only bus 154 and bus 205 do not have any 
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induction motor loads connected. Bus 154 and bus 205 have only ZIP load connected and the 

percentages of constant impedance, constant current and constant power loads in the ZIP load 

are 30%, 30% and 40%.  

Normally, it is true that the voltage will recover faster when the load is shed at the 

location closer to the faulted bus. However, it is also recognized that the root cause of 

FIDVR problem is the motor stalling. Since the applied three phase fault situated right at the 

bus 154, it will be interesting to compare the load shedding results between ZIP and 

induction motor loads.  

7.5.2 Load Shedding Effect Comparison between ZIP and Motor Loads  

 After the three phase short circuit fault at bus 154 is cleared, it takes 0.7356s for the 

system voltage to recover to 0.8p.u. and no load shedding action was applied. This system 

voltage recovery time is measured by the voltage recovery time at the slowest recovery bus 

154 and it violated the recovery criterion (see Fig.5-3). 

The system loads are classified as three groups to evaluate the load shedding effects. The 

three groups include ZIP loads, induction motor (IM) loads, and multi induction motor loads. 

The load shedding actions were applied to each of the three groups at time 0.4s, which is 

0.14s after the three phase fault at bus 154 is cleared. After load shedding actions were taken, 

the system voltage recovery time was derived using time domain simulation. The system 

voltage recovery time is then used to evaluate the load shedding effect of each load group. 

 Table 7-3 summarized the time domain simulation based voltage recovery time for 

shedding total load at different load groups.  
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Table 7-3. Load shedding effect comparison between ZIP and motor loads 

ZIP Loads no shed Bus154 Bus205 

Shed Amount 0MW 600MW 1200MW 

Recovery Time(s) 0.736s 0.429s 0.407s 

Motor Loads Bus153 Bus203 Bus3005 Bus3007 Bus3008 

Shed Amount 200MW 200MW 200MW 200MW 200MW 

Recovery Time(s) 0.494s 0.478s 0.500s 0.556s 0.553s 

Multi Motor Loads Bus 203&153 Bus 203&153&3005 

Shed Amount 400MW 600MW 

Recovery Time(s) 0.410s 0.401s 

 

As shown in table 7-3, for ZIP loads (first group), voltage is recovered by 0.429s with 

600MW shed at bus 154, by 0.407s with 1200MW shed at bus 205, and by 0.736s with no 

load shedding.  

Regarding the induction motor (second group), the same amount of load (200MW) was 

shed at each induction motor load bus. After load shedding at each motor bus, the fastest 

voltage recovery is by 0.478s with load shed at bus 203 and the slowest voltage recovery is 

by 0.556s with load shed at bus 3007.  

By only looking at the voltage recovery time after load shedding, it can be found that the 

voltage recovered faster with loads shed at ZIP load (0.429s and 0.407s) than that shed at 

induction motor loads (0.478s as the fastest). However, it should be noticed that the load 

shedding amount at the ZIP loads are much larger than those at the induction motor loads 
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(1800MW vs 1000MW). Therefore, the comparable load shedding amount was applied at 

multiple induction motor loads (third group) to evaluate the voltage recovery time.  

As shown in Table 7-3, for multi-motor load case, If loads at buses 203 and 153 are shed 

(totally 400MW), the voltage recovery time is 0.410s which is smaller than voltage recovery 

time 0.429s obtained by shedding loads at bus154 (600MW). Similarly, if loads at buses 203, 

153 and 3005 are shed (totally 600MW), the voltage recovery time 0.401s is smaller than 

voltage recovery time 0.407s of shedding loads at bus205 (1200MW).  

Using this test case with a three phase fault applied at ZIP load (bus 154), it has been 

shown that the system voltage recovers faster with the same amount of load being shed at 

induction motor loads than that shed at ZIP loads. In this test, even though the fault was 

applied right on the ZIP load bus and thus relatively far away from motor loads, the induction 

motor loads still show much better load shedding effect than the ZIP loads. Therefore, it can 

be concluded that the induction motor load is indeed the better candidate than the ZIP loads 

to be shed for mitigating FIDVR events.   

7.5.3 Evaluate Voltage as an Indicator for FIDVR Mitigation 

Based on the load shedding effect evaluation results, it is also interesting to see whether 

voltage magnitude can be used as a reliable indicator for selecting loads to be shed to 

mitigate FIDVR. Fig. 7-11 shows voltage recovery after clearing the three phase fault at bus 

154. 
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Fig. 7-11. System voltage recovery after fault clearing at bus 154 

 

As shown in Fig. 7-11, the load bus ranking using voltage deviation is 

154>205>203>3008>3007>3005>153. Therefore, if bus magnitude is used as the indicator 

for selecting loads to shed to mitigate FIDVR, load at bus 154 and load at bus 205 will be the 

top two candidates.  

However, compare to the time domain simulation based voltage recovery results shown 

in Table 7-3, the above bus voltage magnitude based load shedding selections clearly indicate 

that the bus voltage deviation information is not suitable for identifying the most effective 

load to shed for FIDVR mitigation. 
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7.5.4 KE Deviation as an Indicator for FIDVR Mitigation 

For comparison purpose, the kinetic energy information is also derived here for selecting 

most effective loads to shed. Figure 7-12 provides the derived KE deviation of each motor 

load bus using obtained speed deviation and equivalent motor inertia. It shows that the top 

three buses with the largest KE deviations are buses 203, 153 and 3005 which are identical to 

the time domain simulation based voltage recovery results shown in Table 7-3.   

Thus, it is again shown that motor kinetic energy can properly indicate the most effective 

loads to shed for FIDVR mitigation. 
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Fig. 7-12. Derived KE deviations after fault clearing at bus 154 
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7.6 Evaluate Reactive Power Demand as an Indicator for FIDVR 

Mitigation 

In this section, the reactive power consumption of load will be evaluated as an indicator 

for determining the load shedding location and amout for FIDVR mitigation. The sample 

power system used in Section 6.3.1 is applied again as the test system to conduct this study.  

Generally, the gap between system reactive power demand and supply after a system 

contingency is the main factor to drive system voltage decreasing or lead to delayed voltage 

recovery. Also, as shown and discussed in the previous study results of  induction motor 

stalling characteristics, the reactive power consumption could be greatly increased when the 

low voltage is sustained beyond a certaint time. Therefore, it is necessary to evaluate the 

effectiveness of using load reactive power demand for FIDVR mitigation.  

The applied fault in the test system is the fault 1 in case 1 and the details of this fault can 

be found in Appendix B. The reactive power demand of all the seven load buses after fault is 

cleared are plotted in Fig.  7-13. It can be seen that the reactive power demand of the seven 

load buses can be divided into three groups in term of their reactive power consumption 

amount. The first group includes loads at bus 154 and bus 205 which have the largest 

reactive power demands. The second group includes loads at bus 153, bus 3005 and bus 203. 

The third group includes loads at bus 3008 and bus 3007 which has the smallest reactive 

power demands. Therefore, if reactive power demand of load is applied as an indicator for 

choosing load shedding location and amount, the first group (loads at bus 154 and 205) will 

be the best choice for load shedding in this study case. However, the CRT results of shedding 

various loads summarized in Table 7-4 indicate that the most effective candidate for load 
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shedding is to shed the combined loads at bus 203, bus 153 and bus 3005. Thus, the time 

domain simulation based results clearly prove that the load reactive power demand is not 

proper for identifying the most effective loads to shed to mitigate FIDVR problems. 

The main reason for the ineffectiveness of using reactive power demand as an indicator is 

that reactive power demand is affected by the load amount connected at each load bus and it 

does not necessarily reflect the gap between reactive power demand and supply. Therfore, 

shedding loads at the location which has a relatively larger reactive power demand is not as 

effective as the proposed KE based scheme for mitigating the delayed voltage recovery 

problem. Also, it has been shown in the section 7.5 that induction motor loads generally are 

better candidates for load shedding than ZIP loads. In this study case, the loads at bus 154 

and bus 205 are pure ZIP loads and the load amounts at these two buses are much larger than 

the load amounts at those induciton motor loads. Thus, it further proves that the reactive 

power demand is not an effective indicator for determining the load shedding location and 

amount for FIDVR mitigation. 
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Fig. 7-13. Reactive power demand of each load bus after clearing fault1 in case1 

 
Table 7-4. CRTs of shedding various loads with fault1 in case1 

Bus shed no shed 153 154 203 205 3005 

CRT(s) 0.736 0.494 0.429 0.478 0.407 0.500 

Bus shed 3007 3008 203&153 203&153&3005 

CRT(s) 0.556 0.553 0.410 0.401 
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7.7 Supply Side Response during FIDVR Event 

Fault induced delayed voltage recovery is essentially caused by the imbalance between 

reactive power supply and demand. The stalling induction motor requires 4-6 times its steady 

state reactive power consumption and drives the generators and SVCs to supply more 

reactive power to meet the demand. However, all the reactive power compensation devices in 

the systems are planned according to some preassumed contingency scenarios, and the 

installed capacity of the devices usually cannot meet the large reactive power demand due to 

stalling motors. In the previous sections of this dissertation, we have studied the reactive 

power demand during motor stalling and proposed the demand side control method for 

mitigating FIDVR problems. In this section, the supply side responses (reactive power 

generation) during FIDVR event will be presented and analyzed. 

The simplified 9-bus test system from ERCOT will be also used here to identify the 

supply side responses. In this study, the UVLS relay is also equipped in the large induction 

motors in the system. The three-phase short circuit fault was applied at bus7 and was lasting 

for 0.4s. The voltage trajectories of all the generator buses and load buses can be seen in Fig. 

7-8.  The reactive power generation from generators at bus1 and bus3 were presented in Fig. 

7-14. It can be seen that the reactive power generation was greatly increased after the fault 

was applied at 0.05s and was obviously reduced at 0.4s in response to the fault clearing. Then, 

all the two generators started to increase the reactive power output due to the demand from 

motors trying to accelerate. At 0.7s, the UVLS relay tripped two large induction motors at 

bus7 and bus8 since the low voltage has been sustained beyond the threshod, and the reactive 

power generation was reduced for the seond time in response to this motor tripping. From 
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then on, the voltages of generators and loads began to recover slowly (see Fig. 7-8), and the 

reactive power output from the two generators also increased trying to accelerate the voltage 

recovery process. However, both generators at bus1 and bus3 achieved their maximum 

reactive power output limits at 2s and 2.4s respectively, and their outputs began to decrease 

after the maximum points (see Fig. 7-14).   
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Fig. 7-14. Reactive power generation by generators at Bus1 and Bus3 

 
Supply side responses of the two generators in this test case illustrate that FIDVR events 

usually follow the phenomenon that system reactive power resources are exhausted. Since 

stalling motor demands 4-6 times the steady state reactive power and the power system 
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reactive power planning normally does not require this much reserve due to economic 

concerns, the supply side method alone may not be sufficient to prevent FIDVR events. 

Therefore, it is necessary and important to develop the demand side method as the last 

defense of the power system to mitigate FIDVR problem. 

7.8 Practical Implementation to Large Power Systems 

The proposed load shedding scheme applies a centralized scheme to shed loads at the 

transmission level. Due to the huge number of motor loads connected to the power grid, it is 

not practical to monitor each motor load or trip it separately. Therefore, in the proposed 

scheme, the aggregated load at the transmission substation is monitored and will be tripped 

when it is necessary.  

In practical power systems, it is true that each feeder supplies both static loads and 

dynamic loads. Since it is not feasible to separate dynamic and static loads under -4one 

transmission substation of practical power systems, the total load at one transmission 

substation is treated as an equivalent induction motor in order to evaluate each load bus’s 

contribution in the FIDVR event.  

Measurements of the total bus load are used to derive the equivalent motor inertia and 

motor speed. The derived equivalent motor speed can provide three types of information 

about the aggregated load at one transmission substation: (1) whether there is induction 

motor connected at the substation, (2) percentage of the induction motor at the substation, (3) 

the speed deviation of the equivalent induction motor (aggregated load). In the section 6.5.2, 

it has been illustrated that the derived speed using total load measurements can indicate the 
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load buses which have no motors at all. These load buses normally are not good candidates 

for the most effective loads (MEL) to shed. In the section 6.5.3, it has been illustrated that the 

bus with smaller motor percentage and larger motor speed could have similar equivalent 

aggregated speed to that of another bus which has larger motor percentage and smaller motor 

speed. This validates the equivalent motor speed using total load measurement can take into 

account induction motor percentages. Therefore, equivalent motor kinetic energy deviation 

calculated based on the derived inertia and speed is used to identify the MEL to shed. By 

shedding MEL, the time needed for system voltage recovery is the shortest.  

In implementation of the proposed online load shedding scheme to a practical power 

system, the centralized scheme first receives system measurements from relays or system 

monitoring devices at the transmission substations. Then, MELs are identified based on the 

derived KE deviation at each transmission substation. Finally, the trip signals are sent out to 

shed the calculated load amounts at the locations (transmission substations) of MELs. 

Actually, after the load shedding amount is determined for each transmission substation, the 

relay will shed the same percentage of load at each distribution feeder under the transmission 

substation, no matter whether the distribution feeder has motor load connected or not. 

7.8.1 System Monitoring Requirement  

For implementing the proposed online demand side control to large power systems, it is 

not required to monitor every bus in the system.  

Considering the huge number of motor loads connected to the power grid, it is not 

practical to monitor each motor load or trip it separately. Therefore, in Chapter 6, we 

proposed to monitor and control the aggregated load at each transmission bus (high voltage 
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level). The derived equivalent motor speed can provide three types of information about the 

aggregated load at one transmission substation: (1) whether there is induction motor 

connected at the substation, (2) percentage of the induction motor at the substation, (3) the 

speed deviation of the equivalent induction motor (aggregated load). After SCADA or EMS 

collects system measurements, the equivalent motor inertia and speed can be derived using 

the proposed methods and thus the KE deviation of the aggregated load at each transmission 

bus can be obtained. Based on this KE deviation information, the load shedding locations and 

amount at each location can be determined.  

Since the delayed voltage recovery problem happens frequently in the areas 

predominated by motor loads, only a part of the entire transmission system needs to be 

monitored. Thus, only the measurement data of some transmission substations is needed to 

be sent to SCADA or EMS for calculating the KE deviation of each monitored transmission 

bus. Therefore, the data communication will also not be a problem for real-time 

implementation of the proposed scheme. From the KE derivation process presented in 

Chapter 6, it can be seen that the KE deviation information can be obtained almost 

simultaneously after measurement data are received. Therefore, it enables the decisions 

regarding load shedding locations and amount at each location to be made fast enough for 

on-line real-time load shedding. 

7.8.2 The Assumption for Practical Implementation 

There is only one assumption regarding the implementation of the proposed method for 

mitigating FIDVR event in large power systems. The assumption is that "there is no change 

in load composition between current and previous time". According to reference [59], the 
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time needed for deriving motor inertia is about 1-2 minutes with the hybrid learning 

algorithm. According to references [7] and [67], the time frame of the load composition 

change at the transmission level (where the loads served from a large number of distribution 

transformers are aggregated as an equivalent one) is relatively large. Thus, the time needed 

for deriving the inertia (1-2 minutes) should be within the time frame of the load composition 

change at the transmission level. Therefore, this assumption is reasonable for implementing 

the proposed method to practical power systems.   

Based on the above analysis, it can be concluded that the proposed load shedding scheme 

is practical to be implemented in a large power system. 

7.9 Practical Implementation Comparision With Traditional UVLS 

The comparisons between the proposed online demand side control strategy and the 

traditional UVLS scheme in terms of the real-time implementations are provided as follows.  

Similar to the traditional four-stage UVLS scheme, the proposed strategy involves 

multiple steps to shed loads. Also, total amount of load to be shed in each step and time steps 

are predetermined based on the system requirements.   

The main difference between the proposed load shedding scheme and traditional UVLS 

scheme is that the proposed scheme applies equivalent motor kinetic energy information to 

identify the most effective locations to shed load and determine the amount of load shedding 

at each selected location. Another difference is that the proposed scheme applies both the 

predicted voltage recovery time and voltage level as the conditions to trigger load shedding 

actions. 
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Comparing the field implementation, the traditional UVLS scheme just requires installing 

the UVLS relays in the system with fixed voltage setting and time delay setting. It is indeed 

very simple to implement. However, it is also because of this simplicity, the traditional 

UVLS is not effective and efficient to mitigate the FIDVR event as shown in the numerical 

simulation part in Chapter 6. On the other hand, the proposed scheme requires having one 

central controller to collect the measurements of each monitored bus, make load shedding 

decisions based on the calculated kinetic energy information, and send out load shedding 

signals. However, considering the existing implementations of SCADA and EMS in the 

practical power systems, the required central controller in our proposed scheme can be 

substituted with the SCADA. In other words, the proposed scheme can be implemented in the 

existing SCADA system requiring no additional system monitoring devices or data 

communication channels.  

The proposed scheme only requires traditional load measurements including bus voltage, 

load real power and load reactive power to derive the kinetic energy deviation information at 

each monitored bus. Then, the most effective load shedding locations and the load shedding 

amount at each location can be obtained based on the derived kinetic energy deviation 

information. As shown in the Section 6.7 of Chapter 6, the proposed scheme can indeed shed 

much less load to recover the system voltage faster than the traditional UVLS scheme.  

Summarizing the advantages of the proposed scheme over the traditional UVLS scheme 

in mitigating real-time FIDVR events, the proposed scheme can be easily implemented in the 

existing SCADA system requiring no additional system monitoring devices or data 

communication channels and it can indeed provide a more effective and efficient way to 
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mitigate FIDVR events by identifying the most effective load shedding locations and the load 

shedding amount at each location. 
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CHAPTER 8 CONCLUSION 

8.1 Contributions 

This dissertation proposes advanced aggregate load modeling and online demand side 

control techniques that can be applied to mitigate fault-induced delayed voltage recovery in 

power systems subject to severe disturbances. The proposed methods cover systematic load 

modeling methodology and efficient load parameter identification technique, and provide a 

real-time motor kinetic energy derivation scheme and online load shedding strategy to 

improve power system short-term voltage stability.    

The main contributions of the dissertation can be summarized as: 

• Systematic methodology is proposed to derive aggregate load models using 

measurement based approach at the high voltage level (transmission system level). In 

the absence of precise load information, measurement based approach is preferred 

since it directly measures dynamic system behavior that can be used to derive 

accurate load parameters. Thus the systematic methodology including load modeling 

structure selection, load parameter identification procedure and load parameter search 

space analysis is important for better load modeling.  

• A novel parameter identification technique, hybrid learning algorithm, is proposed for 

deriving load model parameters. The hybrid learning algorithm combines the genetic 

algorithm (GA) and the nonlinear Levenberg–Marquardt algorithm. It takes 
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advantages of the global search ability of GA and the local search ability of 

Levenberg–Marquardt algorithm, which is a more powerful search technique. 

• The mechanism of FIDVR is investigated by studying the stalling characteristics of 

induction motors and the relationship between FIDVR and motor kinetic energy. 

Analysis has revealed that motor KE deviation is identical to the integral of power 

imbalance, which indicates the connection between KE deviations and system 

transient voltage recovery. A methodology is proposed to obtain equivalent motor 

inertia and speed through online measurements for motor kinetic energy derivation. 

• An online demand side control strategy making use of the motor kinetic energy is 

proposed to disconnect the stalling motors at the transmission level, which will avoid 

the large amount of additional reactive power required by stalling motors. Through 

various validations and comparison with traditional UVLS scheme, the proposed 

demand side control method has been proven to be an effective and efficient online 

solution to mitigate FIDVR events.   

8.2 Further Research Directions 

Further research might be done in a variety of directions based on the proposed research 

work in the dissertation. Follows summarize some potential research areas.  

• Study responses of induction motor based load model (3-phase positive sequence 

model) to measurements obtained by single phase or two-phase faults.  

• Investigate whether it would be beneficial to divide the induction motor model 

structure into two parts to represent small motors and large motors. 
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• Design an integrated control scheme which effectively combines both demand side 

control (shed stalling motors) and supply side control (install reactive power 

compensations) to mitigate FIDVR events. 

• Integrate the proposed load modeling and online demand side control methods into 

the framework of developing power system smart grid.   
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APPENDIX A: PARAMETERS OF APPLIED INDUCTION 
MOTOR MODELS 

Load parameters of Motor I and II are listed in Table A-1. 

 

Table A-1. Parameters of the two applied induction motor models 

 Motor I Motor II 

Stator resistance - Rs  0.025 0.035 

Stator leakage reactance - Xs 0.08 0.094 

Magnetizing reactance - Xm 5.0 2.8 

Rotor resistance - Rr1 0.028 0.048 

Rotor leakage reactance - Xr1 0.04 0.163 

Rotor resistance - Rr2 0.07 - 

Rotor leakage reactance - Xr2 0.03 - 

Rotor inertia constant - H 0.28 0.93 
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APPENDIX B: DETAILS OF THE FOUR FAULTS IN THE 
THREE TEST CASES 

The applied four faults were all three phase bus faults occurred at different buses with 

different time durations. Details of the four faults are summarized in Table B-1. 

 

Table B-1. Details of the four faults in three test cases 

 Faulted bus Initial time End time 

Case1-fault1 154 0.1s 0.26s 

Case2-fault1 152 0.1s 0.3s 

Case3-fault1 152 0.1s 0.3s 

Case3-fault2 3008&3005 0.1s 0.3s 
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